High-efficiency room air conditioners

Uniflair™ air conditioners designed for precision environmental control of mission-critical applications

www.uniflair.co.uk
Combining cutting-edge technology with energy efficiency and environmental sustainability is the basis of Schneider Electric™ room air conditioners, designed to offer a complete cooling solution for any IT environment. High energy efficiency, complete reliability, and total flexibility guarantee total-cost-of-ownership reduction and the integration in Tier III and IV data centres and mission-critical installations.

All the units are all-in-one for easy design and installation, and completely configurable to guarantee use in multiple applications and environmental conditions for a continuous and quiet operation.
Table of contents

- Data centre needs ... Page 7
- Uniflair .. Page 8
- Uniflair benefits ... Page 10
- Uniflair AM-LE configurations ... Page 16
- Uniflair Mobile telecom air conditioners Page 18
- Room air conditioners portfolio ... Page 20
- Uniflair AM technical data sheets ... Page 22
- Uniflair LE technical data sheets ... Page 34
- Uniflair WM technical data sheets ... Page 60
- Uniflair MB technical data sheets ... Page 62
- Uniflair SP technical data sheets ... Page 64
- Active floor technical data sheets ... Page 65
- Uniflair CAP technical data sheets ... Page 66
- Data centre infrastructure management Page 67
Flexibility
Modular and tailored solutions for any application

Availability
Continuous operation to safeguard the customer’s business

Energy saving
Technological excellence for efficient performance
Secure power

Data centre

Industry
Maximum efficiency, total availability
Where no failure is allowed
Data centre needs

Efficiency and sustainability
Data centres represent one of the highest energy-consuming elements within the electrical chain. The objective is — therefore — to optimize the operation of this infrastructure, reduce energy consumption, maximize efficiency, and minimize CO₂ emissions.

For the cooling system to provide increased flexibility and significant improvement in energy consumption metrics (e.g., PUE), it is important that the structure presents a significant level of efficiency not only at nominal loads, but also at partial loads.

Indirect free cooling solutions should be proposed whenever possible, as well as optimization systems according to the heat load in the room.

Modularity and flexibility
New server technology has introduced an increased level of modularity in infrastructure growth, adapting to the needs of the client and facilitating upgrades that are difficult to predict long term.

Cooling solutions must therefore allow for modular planning and integration and adapt automatically to the new load conditions of the room.

A simple infrastructure creates significant advantage in terms of management costs. This can be achieved by using cooling systems that can be implemented over time. Another important element that influences operating costs and system reliability is system maintenance. A structure that allows simple maintenance is based on consolidated, tested, and reliable systems and represents an indisputable advantage of simplified system management.

Infrastructure management
Data centres are complex environments; providing complete systems composed of integrated elements guarantees compatibility, a single source of responsibility, and strategic integration of a regulated system.

This is a departure from the traditional logic of single elements and a move toward a situation where all of the operating parameters can be optimized (both energy and operational) through integrated logics (internal units, distribution systems, and external units). The cooling system must then be able to communicate with the various building management systems.

Reliability
A fundamental requirement for each data centre is to guarantee continuous operation and total reliability. This is achieved thanks to the design and implementation of cooling systems that are intrinsically reliable and incorporate an appropriate level of redundancy. System reliability is based upon several basic considerations such as a dual source of cooling and electrical power.

Cost of ownership
Reduced management and operating costs is a competitive advantage in the data centre market. The cooling system accounts for about 40% of the total on-site energy consumption. In addition to reducing energy consumption, it is also important to reduce the costs of maintenance and reconfiguration due to inevitable changes in the IT system.

To improve data centre efficiency in terms of cost, it is necessary to reduce the initial investment in the system with an infrastructure that grows in line with real needs over time.

An increase in the effectiveness of a cooling system allows auxiliary systems to be precisely ‘sized’ without extra cost due to the excess power installed. Such CapEx optimization can be achieved by using a cooling system that is simply implemented and adapted to changing site requirements.

Keeping up with growing heat densities while reducing operating costs is today’s challenge.

Schneider Electric room air conditioners rise to this challenge because energy efficiency, availability, and flexibility are the priorities. Our wide range of products allows us to meet the cooling requirements of every size data centre, from small (below 200 kW) to large (1 MW+), and to apply the right technology according to the IT equipment and environmental infrastructure.

30%*

of annual energy consumption is reduced thanks to innovative components like RadiCal EC fans, tandem compressors, EEV valves, R-410A refrigerant, and AFPS systems.

99,99%

is the reliability of Tier III and Tier IV Data Centres according to Uptime Institute certification standards.

- Uniflair CRACs are Tier III and Tier IV ready design.

*average value in a medium data centre in Europe
High-efficiency room air conditioners
Uniflair

Perimeter cooling for any data centre environment, with a low cost of ownership

Uniflair™ AM and Uniflair LE are leading-edge precision cooling solutions specifically designed to maintain temperature and humidity within extremely tight tolerances.

Perfect for racked and nonracked IT loads, these products meet the diverse requirements of any data centre environment. These intelligent units monitor the status of components and environmental parameters to ensure correct functionality during all modes of operation. When combined with hot-or-cold-aisle containment solutions, Uniflair products can further improve efficiency and achieve higher densities.
Uniflair benefits

High energy efficiency

Minimizing operating costs in high-tech installations is becoming more essential than ever in the competitive marketplace and emphasis on environmental sustainability is increasing. This means that high energy efficiency is now a key factor in precision air conditioning and Schneider Electric units have been designed with a major focus on this objective.

Low energy consumption is the result of an exhaustive analysis — from the choice of components to the constant refinement of design solutions.

SHR (sensible heat ratio) close to 1

The primary objective of precision air conditioning must be to dissipate the real heat load in the space.

Electronic equipment produces only sensible heat. Any unwanted latent cooling (dehumidification) provides no useful service to the equipment being cooled and is a considerable waste of energy in itself and in the extra energy that may need to be expended to put humidity back into the space.

For this reason Schneider Electric units have been designed to provide a very high ratio of sensible to total cooling (sensible heat ratio).

Net sensible cooling capacity

Efficiency is a philosophy that is expressed through clear choices within which the real contributions to the equipment cooling capacity must be clearly identified. Schneider Electric has made technical choices aimed at solutions that optimize the real contribution of removing heat from the space — the net sensible capacity (sensible cooling minus fan motor heat gains).

Versatile configurations

A wide range of configurations has been developed to give building services engineers maximum design freedom without the need for expensive solutions. Versatility is at the heart of the Schneider Electric units, including:

• Different fan configurations to cover a wide range of requirements
• A range of filter types and grades
• Different acoustic linings for the panels of the unit casing
• Adaptability to a variety of plant configurations
• Versions available with one or two independent refrigerant circuits
• Minimal footprint with frontal access for all maintenance
• Minimal service clearance
• Adaptability to a wide range of supervision and network languages and protocols
• Simple on-site implementation of a variety of configurations
Compact dimensions and simple handling/installation

Uniflair units are designed with special attention to equipment dimensions and to the logistics of handling, installation, and accessibility. Given the very high cost of space in high-tech environments, it is vital not only that precision air conditioning has the smallest possible footprint, but also that there is full frontal component access to enable units to be installed next to each other or next to other equipment. Uniflair units represent the industry benchmark — particularly compact, low weight, quick and simple to install, and easy to maneuver, even in confined spaces.

Maintenance

The ease of maintenance of Uniflair units is a fundamental factor in reducing operating costs and avoiding down time. The front panels can be opened without the need for special tools and all normal maintenance operations can be carried out from the front of the unit. A pushbutton catch ensures easy access to the controls compartment while the cover of the electrical panel inside is fitted with a safety interlocked mains isolator in compliance with safety regulations. What is more, the units can be carried out while in operation and without disrupting the airflow.

Reliability

Units ensure reliability through:

- Monitoring of all components
- Precise and clear display of any malfunctions or abnormal operating conditions, including a record of the last 100 events
- Management of emergency conditions with ability to deactivate the operation of heaters and humidifiers in predetermined emergency situations while still maintaining basic cooling needs

Flexibility

The control software enables the operation of the unit to be adapted to every type of installation thanks to:

- The facility to input a double set-point for both temperature and humidity
- The facility to change fan speed directly from the user terminal (units with EC fans)
- Flexible configurability of alarm outputs
- The facility to calibrate temperature and humidity sensors
- The facility to interface with a wide range of BMS systems
Uniflair benefits

Tandem

In many applications the room load can vary enormously during the course of a single day or from season to season. This will cause wide variations in the amount of cooling required at any given moment. In these circumstances it is very important to use precision air conditioning units that are highly energy efficient at part-load. Uniflair LE models (with suffix **21, **42) are specifically designed with part-load environments in mind, fitted with two compressors operating in parallel on the same circuit, these models offer two stages of cooling on a single circuit of refrigeration. As the evaporator coil surface area (designed for the capacity of two compressors) is fixed, one single compressor in operation (fig. B) benefits from the availability of a ‘double sized’ evaporator coil. This maximization of the cooling effect leads to increases in part-load efficiencies and a rise in the part-load coefficient of performance (COP). To compare part-load efficiencies of different units, a number of parameters have been developed that take into account the COP at 25, 50, 75, and 100 per cent load and calculate a weighted mean. These parameters (IPLV: integrated partial load value, EMPE: efficienza media ponderata in regime estivo, and SEER: seasonal energy efficiency ratio) differ in their weightings and the operating conditions at which the different COPs are calculated, but they all follow the same formula.

\[
\frac{(W_{100}\times COP_{100}) + (W_{75}\times COP_{75}) + (W_{50}\times COP_{50}) + (W_{25}\times COP_{25})}{100}
\]
Energy-saving units (free-cooling)

Energy consumption continues to be a major constituent in the operating costs of modern systems. Guaranteeing maximum reliability in operation at the same time as reducing energy consumption to the minimum is the result of technical product choices.

The energy-saving versions have been designed to apply this concept to the best effect. The operating principle is based on the ability to provide free cooling for a space when the outdoor temperature is below that of the space itself; the lower the outdoor temperature, the greater the energy saving.

Free-cooling is provided without the need to operate compressors and does not depend upon pulling outside air into the space (indirect free-cooling). This guarantees stable humidity and air quality in the space.

Comparison of annual power consumption between a standard unit and a unit without a free-cooling system (Space conditions 24 °C, 50% RH at constant load, TDER1822A + 2 x RAL3600 - Frankfurt).

Total control

Uniflair AM-LE units are equipped with sophisticated controls and management software conceived, developed, implemented, and tested by Schneider Electric. In addition to guaranteeing maximum flexibility in application to any specific project, every control solution is designed to maximize the performance and reliability of the type of unit to which it is fitted. Every component of the unit is monitored in real time, its performance optimized and kept within design parameters. As sophisticated as the control algorithms may be, the interface is user friendly and intuitive with an easy-to-read backlit display. The result is a control system that is reliable, flexible, and high performing.
Uniflair benefits

EC fans
Every component of Uniflair AM and LE ranges has been chosen in accordance with the design criteria of energy saving for maximum efficiency. Just one example is the selection of electronically commutated (EC) direct current motors. This new type of fan-motor combination offers a number of advantages over traditional types:

• Lower power consumption on the fan side
• High part-load efficiency
• Fan speed adjustment via the microprocessor control while the unit is running
• Ability to regulate airflow depending on the actual thermal load

Radical fans
Uniflair LE chilled-water (CW) units are equipped with the latest generation radical EC fans for maximum efficiency. Impellers are made of high-tech compound material with optimized flow control and high-efficiency GreenTech EC motors.

Variable-speed brushless compressors
Uniflair AM-LE units, series IDAV, are equipped with latest generation variable-speed drive scroll compressors.

These units have been developed in order to improve further energy efficiency values of brushless compressors and guarantee high efficiency level at partial load conditions, compared to units with fixed-speed or traditional variable capacity solutions.

Both single variable-speed compressor (**11A models) and tandem configuration with one fixed- and one variable-speed compressor in one single circuit (**21A) are available.

In order to minimize the operative expense, air-cooled units are naturally matched with condensers equipped with EC fans.
Automatic Floor Pressurization System

Maintaining correct pressurization of the floor space is a key factor to ensure that the cooling system operates with maximum efficiency and that cool air is available where needed. This process must be guaranteed for the entire lifetime of a server room that may be upgraded and changed over time.

The Automatic Floor Pressurization System (AFPS), developed and tested by Schneider Electric, enables structural flexibility through automatic adjustment of the airflow according to the servers that have been installed. AFPS automatically adjusts the airflow of the perimeter units that are fitted with EC fans during standard and emergency maintenance, maintaining a constant pressure under the raised floor and avoiding the creation of hot spots.

R-410A

R-410A is similar to a mono-component refrigerant (which is near azeotropic), as it is characterized by the absence of glide during the change of state, which occurs at a constant temperature without energy losses. Thanks to a greater heat exchange capacity and a notable decrease in pressure drops, it is possible to maximize the size of the exchangers while increasing efficiency. Moreover, performance is not affected by separation of the gas components over time. In fact, any refrigerant leaks and subsequent integrations do not affect performance and can be managed quickly and effectively without replacing the whole refrigerant charge and without changing the initial composition.

Electronic expansion valves

Electronic expansion valves (EEVs) are integrated with the microprocessor range in all Uniflair models. This innovation provides highly efficient electronic control of the flow of refrigerant that is unmatched by any traditional mechanical expansion valve. Under the control of the Schneider Electric Control System, the EEV provides accurate control of the refrigerant superheat to ensure an increase in the COP at low external temperatures; it enables the unit to operate at much lower condensing pressures than would be possible with a traditional mechanical valve. The dehumidification function is also controlled through the operation of the EEV. In this way dehumidification is achieved without a reduction in the airflow rate, ensuring continuous and uniform air distribution in the space and avoiding any sudden variations in discharge air temperature.

Percentage annual reduction in energy consumption of a unit fitted with EEV compared to a traditional version (cooling capacity: 60 kW, Space conditions: 24 °C, 50% RH at constant load, TDAV1822A + 2 x CAP0801).
Uniflair AM-LE configurations

Upflow units
Upflow units (with air discharge from the top) are designed to distribute the conditioned air by means of a plenum, through a system of ducts, or via a suspended ceiling. Air intake is normally through the front of the unit, but versions are also available with air return through the rear or via the base.

Downflow units
Downflow units are designed to distribute the conditioned air by means of a raised floor, through a system of ducts, or via a discharge plenum beneath the unit.

DXA series air-cooled direct expansion units
Air-cooled direct expansion units extract heat from the room and transfer it to the outside air using air-cooled refrigerant heat exchangers (condensers). Once installed, the room unit and external condenser form an autonomous sealed circuit.

The remote condensers used with DX units include precise electronic fan-speed condensing pressure control to ensure trouble-free operation of the unit throughout the year under a very wide range of external air temperatures. Special attention has been paid to the acoustic design of the condensers to minimize noise levels. A wide range of combinations is available to meet different site requirements.

DXW series water-cooled direct expansion units
In water-cooled units the heat extracted from the room is transferred to water via stainless steel brazed-plate heat exchangers within the unit.

The cooling water may be fed from the main supply (where permitted), a cooling tower or well (i.e., open circuit), or circulated in a closed loop cooled by external dry-coolers. In the latter case, an antifreeze mixture of water and ethylene glycol is normally used.

Water-cooled units have the advantage that the refrigerant circuits are precharged and sealed in the factory. This makes system installation extremely simple, eliminating the need for any site-installed refrigerant pipework.

Twin-cool units
Twin-cool units, available only on Uniflair LE range, are fitted with two independent cooling circuits:

- CW
- Air-cooled or water-cooled direct expansion

This unit is usually used where an installation has a CW source that cannot be relied on to guarantee continuous service. In this case function priority is given to the CW circuit, with the microprocessor control automatically starting direct expansion operation if the CW supply fails or if the water is not cold enough to dissipate the entire heat load.

Alternatively, the unit controls can be set to prioritize direct expansion cooling, activating CW operation only in the event of a compressor malfunction.

Twin-cool units therefore provide a very high level of security, ensuring continuous system operation at all times and with the flexibility to manage the cooling resources in the best way for the particular installation.

Note: These configurations are shown only as examples.
Energy-saving units

Energy-saving units, available only on Uniflair LE range, represent the ultimate energy-efficient solution in cool or temperate climates. The operating principle exploits the free-cooling effect available when the outside air temperature is lower than that in the conditioned space — the lower the outside temperature, the greater the energy saving. The sophisticated microprocessor control manages operation of the unit automatically in three different situations.

In summer the unit operates as a normal closed circuit glycol-cooled system (Fig. A). As the external temperature falls, the coolant can be used directly for the free-cooling of the air. In this case the coolant is circulated in the coil inside the unit (Fig. B) and both the refrigerant circuit and the glycol circuit contribute to cooling, reducing the energy used by the compressor. If the outside temperature falls further to a level where the coolant can dissipate the entire heat load from the room, then the refrigerant circuit is shut down completely and the unit functions as a traditional CW unit with a modulating valve (Fig. C). With this technology, energy-saving units provide significant reductions in operating costs and payback periods.

![Fig. A: Mechanical cooling operation](image1)

![Fig. B: Mixed cooling operation](image2)

![Fig. C: Free-cooling operation](image3)

CW units

CW units use the availability of CW to control room conditions. CW units have a relatively simple construction and provide outstanding reliability. The microprocessor controls the modulating action of the 3-way (or optional 2-way) CW valve to give accurate capacity control. Careful sizing of the heat exchanger coils yields a high sensible-to-total cooling ratio under most operating conditions at the appropriate CW temperatures.

![CW units with underfloor fans](image4)

CW units with underfloor fans

CW units with fans located underneath the floor allow for more coil area in the unit and less internal air-side pressure drop. The fan module beneath the unit can be configured in many different airflow patterns as well as be placed beneath or above the raised floor for total flexibility. More heat exchanger coil and less pressure drop equals less power consumption and more capacity inside a compact footprint.
Modern telephone technology uses equipment that is usually housed in shelters or in small- to medium-sized rooms. These sites form effective technological rooms with common needs from which a series of particular requirements arise.

Around-the-clock operation every day of the year
- Highly reliable equipment
- Reduced running costs

High breakdown costs
- Rapid intervention
- Avoidance of critical conditions

Expensive equipment
- Guaranteed control of the environmental conditions
- Management of critical situations
- Long life for the system

Unmanned sites
- Autonomous control of emergencies
- Elimination only of the sensible heat

Reduced space
- High density of thermal loads
- Protection of the space dedicated to the instruments

Applications in various environments
- Easy installation
- Adaptable for any site

To satisfy these needs, Schneider Electric has designed various product families to ensure:

- Operational accuracy
- Continuous service
- Flexibility
- Low running costs

Uniflair Mobile telecom air conditioners provide the features of the most advanced cooling units.

Connection to supervision systems
All the units can be connected to a RS485 serial line by using an additional card, ensuring complete monitoring of the system. This allows for:

- Control through the Uniflair Netvisor supervision system
- Connection to a centralized supervision system

Furthermore, all the units are fitted with digital alarm outputs (between three and six depending on the model), which make it easier to control the status of the cooling unit and the connection to the external control PLC.

Intelligent free-cooling
The microprocessor control continuously monitors the room temperature and the outside environmental conditions: if these conditions allow the dissipation of the thermal load, free-cooling is then activated.

Unlike traditional systems, the free-cooling start-up temperature varies as the thermal load in the conditioned room varies.

<table>
<thead>
<tr>
<th>COOLING</th>
<th>MECHANICAL</th>
<th>FREE-COOLING</th>
<th>MIXED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Evaporator fan</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Condenser fan</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>Damper</td>
<td>Closed</td>
<td>Open</td>
<td>Modulating</td>
</tr>
</tbody>
</table>

Minimal discharge air temperature with modulating damper.
Continuous operation during emergencies

Telephone shelters are constructed to guarantee continuous operation even during power failures. The free-cooling damper, microprocessor control, and evaporator fan can also be powered by the UPS in the shelter. During power failures the room is cooled by the outside air through the free-cooling damper. Without air conditioning, the temperature in the racks rises from 45 °C to 70 °C in less than 15 minutes.

Stand-by control

Up to 10 units can be installed in each shelter, which are linked to each other through the local LAN network, offering the following benefits:

- Equal wear to the units that are rotated on a timed basis
- The stand-by unit turns on if there is an alarm in the working unit
- Automatic power turns on if there is an exceptional thermal load
- Control of the combined operating phases with excellent energy savings
Room air conditioners portfolio

<table>
<thead>
<tr>
<th>Size</th>
<th>Chilled Water units</th>
<th>Direct expansion air-cooled units</th>
<th>Direct Expansion water-cooled units</th>
<th>Twin-cool units</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 - 20 kW</td>
<td>Uniflair AM SUC(C-V)</td>
<td>Uniflair AM SDC(C-V)</td>
<td>Uniflair AM SUA(C-V)</td>
<td>Uniflair AM SLW(C-V)</td>
<td>Uniflair AM SDW(C-V)</td>
</tr>
<tr>
<td>20 - 100 kW</td>
<td>Uniflair LE LDCV</td>
<td>Uniflair LE TUA(R-V)</td>
<td>Uniflair LE TDA(R-V)</td>
<td>Uniflair LE TLIW(R-V)</td>
<td>Uniflair LE TDMW(R-V)</td>
</tr>
<tr>
<td>100 - 170 kW</td>
<td>Uniflair LE LUCV</td>
<td></td>
<td></td>
<td>Uniflair LE TUT(R-V) (Air-cooled)</td>
<td>Uniflair LE TDD(R-V) (Water-cooled)</td>
</tr>
<tr>
<td>170 - 250 kW</td>
<td>Uniflair LE HDCV</td>
<td></td>
<td></td>
<td>Uniflair LE TDD(R-V) (Water-cooled)</td>
<td>Uniflair LE TUE(R-V)</td>
</tr>
</tbody>
</table>

Uniflair AM

SUC(C-V)

SUA(C-V)

SLW(C-V)

SUW(C-V)

SUA(C-V)

SUA(C-V)

SUA(C-V)

SUA(C-V)
Direct-expansion air-cooled units with asynchronous motor fans

Uniflair AM
SDAC – SUAC

Range
Cooling capacity: 5 ÷ 20 kW
Refrigerant R-410A
Available versions:
- Downflow (SDAC)
- Upflow (SUAC) with bottom, front, and rear suction

Standard features

- Advanced microprocessor control system is included with local or remote user terminal.
- The units are equipped with forward-curved fans and directly coupled asynchronous motor.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat and sound-proofing insulation.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- Uniflair AM units are in conformity with the following directives: 2006/42/EC, 2004/108/EC, 2006/95/EC, 97/23/EC, 842/2006/EC F-GAS regulation.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- Total front access is available for unit maintenance.
- Electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.
- Microprocessor control system includes:
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general alarm and two for addressable alarms
 - Remote on/off switch
 - Ability to interface with modbus protocol directly on RS485 serial card
 - Ability to interface with main external communication
 - Protocols: BACnet™, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare™ platform

Cooling capacity: 5 ÷ 20 kW
Refrigerant R-410A
Available versions:
- Downflow (SDAC)
- Upflow (SUAC) with bottom, front, and rear suction

Standard features

- Advanced microprocessor control system is included with local or remote user terminal.
- The units are equipped with forward-curved fans and directly coupled asynchronous motor.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat and sound-proofing insulation.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- Uniflair AM units are in conformity with the following directives: 2006/42/EC, 2004/108/EC, 2006/95/EC, 97/23/EC, 842/2006/EC F-GAS regulation.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- Total front access is available for unit maintenance.
- Electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.
- Microprocessor control system includes:
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general alarm and two for addressable alarms
 - Remote on/off switch
 - Ability to interface with modbus protocol directly on RS485 serial card
 - Ability to interface with main external communication
 - Protocols: BACnet™, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare™ platform

Cooling capacity: 5 ÷ 20 kW
Refrigerant R-410A
Available versions:
- Downflow (SDAC)
- Upflow (SUAC) with bottom, front, and rear suction

Standard features

- Advanced microprocessor control system is included with local or remote user terminal.
- The units are equipped with forward-curved fans and directly coupled asynchronous motor.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat and sound-proofing insulation.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- Uniflair AM units are in conformity with the following directives: 2006/42/EC, 2004/108/EC, 2006/95/EC, 97/23/EC, 842/2006/EC F-GAS regulation.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- Total front access is available for unit maintenance.
- Electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.
- Microprocessor control system includes:
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general alarm and two for addressable alarms
 - Remote on/off switch
 - Ability to interface with modbus protocol directly on RS485 serial card
 - Ability to interface with main external communication
 - Protocols: BACnet™, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare™ platform

Cooling capacity: 5 ÷ 20 kW
Refrigerant R-410A
Available versions:
- Downflow (SDAC)
- Upflow (SUAC) with bottom, front, and rear suction

Standard features

- Advanced microprocessor control system is included with local or remote user terminal.
- The units are equipped with forward-curved fans and directly coupled asynchronous motor.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat and sound-proofing insulation.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- Uniflair AM units are in conformity with the following directives: 2006/42/EC, 2004/108/EC, 2006/95/EC, 97/23/EC, 842/2006/EC F-GAS regulation.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- Total front access is available for unit maintenance.
- Electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.
- Microprocessor control system includes:
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general alarm and two for addressable alarms
 - Remote on/off switch
 - Ability to interface with modbus protocol directly on RS485 serial card
 - Ability to interface with main external communication
 - Protocols: BACnet™, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare™ platform

Cooling capacity: 5 ÷ 20 kW
Refrigerant R-410A
Available versions:
- Downflow (SDAC)
- Upflow (SUAC) with bottom, front, and rear suction

Standard features

- Advanced microprocessor control system is included with local or remote user terminal.
- The units are equipped with forward-curved fans and directly coupled asynchronous motor.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat and sound-proofing insulation.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- Uniflair AM units are in conformity with the following directives: 2006/42/EC, 2004/108/EC, 2006/95/EC, 97/23/EC, 842/2006/EC F-GAS regulation.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- Total front access is available for unit maintenance.
- Electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.
Construction options

- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with safety thermostat and manual resetting (T/H versions)
- Hot gas and hot water reheating
- Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the precision of the cooling and the energy efficiency of the cooling cycle

Accessories

The units can be supplied with the following external accessories:

- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- AFPS that can be adapted as a kit with installation instructions
- Motorized damper
- Condensate drain pump
- Suction from the top or front discharge plenums
- Adjustable floor stands
Uniflair AM
SDAV – SUAV

Standard features

- Advanced microprocessor control system is included with local or remote user terminal.
- The units are equipped with EC fans for efficiency maximization.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL 9003 epoxy-polyester paint and internally lined with heat- and sound-proofing insulation.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- Uniflair AM units are in conformity with the following directives: 2006/42/EC, 2004/108/EC, 2006/95/EC, 97/23/EC, 842/2006/EC F-GAS regulation.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- Total front access is available for unit maintenance.
- Electrical panel is situated in a compartment separate from the airflow and in compliance with the 2006/95/EC directive and related standards.

- Microprocessor control system includes:
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general alarm and two for addressable alarms
 - Remote on/off switch
 - Ability to interface with modbus protocol directly on
 - RS485 serial card
 - Ability to interface with main external communication
 - Protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform

Range
- Cooling capacity: 5 ÷ 20 kW
- Refrigerant R-410A
- EC fans

Available versions:
- Downflow (SDAV)
- Upflow (SUAV) with bottom, front, and rear suction

Direct-expansion air-cooled units with EC motor fans
Construction options

- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with safety thermostat and manual resetting (T/H versions)
- Hot gas and hot water reheating
- Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the precision of the cooling and the energy efficiency of the cooling cycle

Accessories

The units can be supplied with the following external accessories:

- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- AFPS that can be adapted as a kit with installation instructions
- Motorized damper
- Condensate drain pump
- Suction from the top or front discharge plenums
- Adjustable floor stands

TECHNICAL DATA

<table>
<thead>
<tr>
<th>SETUP – SUAV MODEL</th>
<th>0151B</th>
<th>0251B</th>
<th>0151A</th>
<th>0251A</th>
<th>0331A</th>
<th>0351A</th>
<th>0501A</th>
<th>0601A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan type</td>
<td>EC backward curved centrifugal motor fan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>V/ph/Hz</td>
<td>230/1/50</td>
<td>400/3/50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fans</td>
<td>nr.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Airflow</td>
<td>m³/h</td>
<td>1600</td>
<td>1750</td>
<td>1600</td>
<td>1750</td>
<td>3000</td>
<td>3300</td>
<td>4500</td>
</tr>
<tr>
<td>N° of compressors</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gross total cooling capacity¹,²</td>
<td>kW</td>
<td>6.4</td>
<td>8.0</td>
<td>6.4</td>
<td>7.9</td>
<td>10.0</td>
<td>13.3</td>
<td>16.9</td>
</tr>
<tr>
<td>Gross sensible cooling capacity¹,²</td>
<td>kW</td>
<td>5.2</td>
<td>6.1</td>
<td>5.2</td>
<td>6.0</td>
<td>9.1</td>
<td>10.6</td>
<td>14.4</td>
</tr>
</tbody>
</table>

DIMENSIONS

<table>
<thead>
<tr>
<th>Dimenstion</th>
<th>mm</th>
<th>0151B</th>
<th>0251B</th>
<th>0151A</th>
<th>0251A</th>
<th>0331A</th>
<th>0351A</th>
<th>0501A</th>
<th>0601A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td></td>
<td>1740</td>
<td>1740</td>
<td>1740</td>
<td>1740</td>
<td>1740</td>
<td>1740</td>
<td>1740</td>
<td>1740</td>
</tr>
<tr>
<td>Length</td>
<td></td>
<td>550</td>
<td>550</td>
<td>550</td>
<td>550</td>
<td>850</td>
<td>850</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Depth</td>
<td></td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
</tr>
</tbody>
</table>

¹ Gross cooling capacities; fans must be deducted to obtain net cooling data
² Data refers to nominal conditions: Room at 24 °C-50% RH, 45 °C condensing temperature, and ESP = 20 Pa.
Direct-expansion water-cooled units with asynchronous motor fans

Uniflair AM

SDWC – SUWC

Range
- Cooling capacity: 5 ÷ 20 kW

Refrigerant R-410A

Available versions:
- Downflow (SDWC)
- Upflow (SUWC) with bottom, front, and rear suction

Standard features

- Advanced microprocessor control system is included with local or remote user terminal.
- The units are equipped with forward-curved fans and directly coupled asynchronous motor.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat and sound-proofing insulation.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- Uniflair AM units are in conformity with the following directives: 2006/42/EC, 2004/108/EC, 2006/95/EC, 97/23/EC, 842/2006/EC F-GAS regulation.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- Total front access is available for unit maintenance.
- The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.

- Microprocessor control system includes:
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general and two for addressable alarms
 - Remote on/off switch
 - Ability to interface with modbus protocol directly on RS485 serial card
 - Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform
Construction options
- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with safety thermostat and manual resetting (T/H versions)
- Hot gas and hot water reheating
- Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the precision of the cooling and the energy efficiency of the cooling cycle

Accessories
The units can be supplied with the following external accessories:
- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- Motorized damper
- Condensate drain pump
- Suction from the top or front discharge plenums
- Adjustable floor stands
Standard features

- Advanced microprocessor control system is included with local or remote user terminal.
- The units are equipped with EC fans for efficiency maximization.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat- and sound-proofing insulation.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- Uniflair AM units are in conformity with the following directives: 2006/42/EC, 2004/108/EC, 2006/95/EC, 97/23/EC, 842/2006/EC F-GAS regulation
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- Total front access is available for unit maintenance.
- The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.
- Microprocessor control system includes:
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general and two for addressable alarms
 - Remote on/off switch
 - Ability to interface with modbus protocol directly on RS485 serial card
 - Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform
Construction options

- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with safety thermostat and manual resetting (T/H versions)
- Hot gas and hot water reheating
- Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the precision of the cooling and the energy efficiency of the cooling cycle

Accessories

The units can be supplied with the following external accessories:

- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- Motorized damper
- Condensate drain pump
- Suction from the top or front discharge plenums
- Adjustable floor stands
Uniflair AM
SDCC – SUCC

Standard features

- Advanced microprocessor control system is available with local or remote user terminal.
- The units are equipped with forward-curved fans with directly coupled asynchronous motor.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat and sound-proofing insulation.
- The unit can be selected with a two-way or three-way valve and an actuator integrated with the microprocessor.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- Total front access is available for unit maintenance.
- The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.

• Microprocessor control system includes:
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general and two for addressable alarms
 - Remote on/off switch
 - Ability to interface with modbus protocol directly on RS485 serial card
 - Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform

Range

Cooling capacity: 5 ÷ 20 kW

Refrigerant CW

Available versions:
- Downflow (SDCC)
- Upflow (SUCC) with bottom, front, and rear suction

CW units with asynchronous motor fans
Construction options
- Double power supply with automatic, integrated management on the active line
- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with double safety thermostat and manual resetting (T/H versions)
- Discharge temperature sensor integrated with the microprocessor to grant discharge temperature control; in combination with D and U version, moisture control can be selected

Accessories
The units can be supplied with the following external accessories:
- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- Motorized damper
- Suction from the top or front discharge plenums
- Adjustable floor stands
Standard features

- Advanced microprocessor control system is available with local or remote user terminal.
- The units are equipped with EC fans for efficiency maximization.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat- and sound-proofing insulation.
- The unit can be selected with a two-way or three-way valve and an actuator integrated with the microprocessor.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- Total front access is included for unit maintenance.
- The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.
- Microprocessor control system includes:
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general and two for addressable alarms
 - Remote on/off switch
 - Ability to interface with modbus protocol directly on RS485 serial card
 - Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform

Range

Cooling capacity: 5 ÷ 20 kW

Refrigerant CW

EC fans

Available versions:
- Downflow (SDCV)
- Upflow (SUCV) with bottom, front, and rear suction
Construction options

- Double power supply with automatic, integrated management on the active line
- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with double safety thermostat and manual resetting (T/H versions)
- Discharge temperature sensor integrated with the microprocessor to allow discharge temperature control, in combination with D and U version can be selected moisture control

Accessories

The units can be supplied with the following external accessories:

- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- AFPS that can be adapted as a kit with installation instructions
- Motorized damper
- Suction from the top or front discharge plenums
- Adjustable floor stands
Direct-expansion air-cooled units with backward-curved fans

Uniflair LE
TDAR – TUAR

Range
Cooling capacity: 20 ÷ 100 kW
Refrigerant R-410A
Available versions:
- Downflow (TDAR)
- Upflow (TUAR)

Standard features
- Advanced microprocessor control system is included with local or remote user terminal.
- The units are equipped with backward-curved fans with directly coupled asynchronous motor.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heatand sound-proofing insulation.
- Electronic expansion valve is controlled by the microprocessor with a dedicated software that increases the precision of the cooling and the energy efficiency of the cooling cycle.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- Total front access is included for unit maintenance.
- The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.
- Microprocessor control system includes:
 - Regulation logic of cooling capacity and airflow integration
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
- Rotation and active stand-by management
- Free contact for general and two for addressable alarms
- Remote on/off switch
- Ability to interface with modbus protocol directly on RS485 serial card (adding this option)
- Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform

Construction options
- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with double safety thermostat and manual resetting (T/H versions)
- Hot gas and hot water reheating

Accessories
The units can be supplied with the following external accessories:
- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- AFPS that can be adapted as a kit with installation instructions
- Motorized damper
- Suction from the top or front discharge plenums
- Adjustable floor stands
<table>
<thead>
<tr>
<th>TECHNICAL DATA</th>
<th>TDAR – TUAR MODEL</th>
<th>0511A</th>
<th>0611A</th>
<th>0721A</th>
<th>0722A</th>
<th>0921A</th>
<th>0922A</th>
<th>1021A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan type</td>
<td>Backward-curved centrifugal motor fan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply V/ph/Hz</td>
<td>400/3/50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fans nr.</td>
<td>1 1 1 1 1 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>5833 5833 7933 7933 7933 7933 7933</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° of compressors</td>
<td>1 1 2 2 2 2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>1 1 1 1 2 1 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross total cooling capacity²</td>
<td>kW</td>
<td>20,4</td>
<td>25,0</td>
<td>25,8</td>
<td>25,6</td>
<td>34,1</td>
<td>33,9</td>
<td>37,1</td>
</tr>
<tr>
<td>Gross sensible cooling capacity²</td>
<td>kW</td>
<td>19,8</td>
<td>22,2</td>
<td>25,2</td>
<td>23,9</td>
<td>28,1</td>
<td>27,2</td>
<td>28,7</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenghth mm</td>
<td>1010 1010 1310 1310 1310 1310 1310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth mm</td>
<td>750 750 865 865 865 865 865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TDAR – TUAR MODEL</th>
<th>1022A</th>
<th>1121A</th>
<th>1122A</th>
<th>1321A</th>
<th>1322A</th>
<th>1422A</th>
<th>1622A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans nr.</td>
<td>1 1 2 2 2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>7933 12267 12267 12267 12267 16406 16406</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° of compressors</td>
<td>2 2 2 2 2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>2 1 2 1 2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross total cooling capacity²</td>
<td>kW</td>
<td>36,9</td>
<td>37,8</td>
<td>37,9</td>
<td>48,0</td>
<td>47,7</td>
<td>51,6</td>
</tr>
<tr>
<td>Gross sensible cooling capacity²</td>
<td>kW</td>
<td>28,0</td>
<td>36,8</td>
<td>36,2</td>
<td>39,3</td>
<td>38,0</td>
<td>51,0</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length mm</td>
<td>1010 1720 1720 1720 1720 2170 2170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth mm</td>
<td>865 865 865 865 865 865 865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TDAR – TUAR MODEL</th>
<th>1822A</th>
<th>2222A²</th>
<th>2242A²</th>
<th>2522A²</th>
<th>2542A²</th>
<th>2842A²</th>
<th>3342A²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans nr.</td>
<td>2 3 3 3 3 3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>16406 21656 21656 21656 22046 22055 22055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° of compressors</td>
<td>2 2 2 2 2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>2 2 2 2 2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross total cooling capacity²</td>
<td>kW</td>
<td>63,9</td>
<td>75,1</td>
<td>81,2</td>
<td>86,7</td>
<td>88,1</td>
<td>97,4</td>
</tr>
<tr>
<td>Gross sensible cooling capacity²</td>
<td>kW</td>
<td>57,3</td>
<td>75,1</td>
<td>80,3</td>
<td>83,3</td>
<td>84,5</td>
<td>90,8</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length mm</td>
<td>2170 2580 2580 2580 2580 2580 2580</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth mm</td>
<td>865 865 865 865 865 865 865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TUAR MODEL</th>
<th>2222A</th>
<th>2242A²</th>
<th>2522A²</th>
<th>2542A²</th>
<th>2842A²</th>
<th>3342A²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans nr.</td>
<td>3 3 3 3 3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>22154 22154 23467 23467 23068 23068</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° of compressors</td>
<td>2 2 2 2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>2 2 2 2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross total cooling capacity²</td>
<td>kW</td>
<td>75,4</td>
<td>82,7</td>
<td>86,5</td>
<td>87,5</td>
<td>97,9</td>
</tr>
<tr>
<td>Gross sensible cooling capacity²</td>
<td>kW</td>
<td>75,4</td>
<td>81,8</td>
<td>85,5</td>
<td>86,4</td>
<td>93,8</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length mm</td>
<td>2580 2580 2580 2580 2580 2580 2580</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth mm</td>
<td>865 865 865 865 865 865 865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Gross cooling capacities; fans must be deducted to obtain net cooling data.
² Data refers to nominal conditions: Room at 24 °C-50% RH, 45 °C condensing temperature, and ESP = 20 Pa.
³ Data refers to downflow unit.
Uniflair LE
TDAV – TUAV

Standard features
- Advanced microprocessor control system is available with local or remote user terminal.
- The units are equipped with EC fans for efficiency maximization.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat and sound-proofing insulation.
- Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the cooling precision and the energy efficiency of the cooling cycle.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- The Uniflair LE range offers the possibility to select units equipped with two compressors (tandem) for each circuit, granting better efficiency and regulation capacity at partial loads (models with the **21 or **42 suffix).
- Total front access is available for unit maintenance.
- The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.
- Microprocessor control system includes:
 - Integrated management of the EEV and refrigerating circuit parameters
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general and two for addressable alarms
 - Remote on/off switch
 - Ability to interface with modbus protocol directly on RS485 serial card
 - Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform

Construction options
- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with double safety thermostat and manual resetting (T/H versions)
- Hot gas and hot water reheating

Accessories
The units can be supplied with the following external accessories:
- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LDN protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- AFPS that can be adapted as a kit with installation instructions
- Motorized damper
- Condensate drain pump
- Suction from the top or front discharge plenums
- Adjustable floor stands

Range
Cooling capacity: 20 ÷ 100 kW
Refrigerant R-410A
EC fans
Available versions:
- Downflow (TDAV)
- Upflow (TUAV)
<table>
<thead>
<tr>
<th>TECHNICAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDAV – TUAV MODEL</td>
</tr>
<tr>
<td>Fan type</td>
</tr>
<tr>
<td>Power supply V/ph/Hz</td>
</tr>
<tr>
<td>Fans nr</td>
</tr>
<tr>
<td>Airflow m³/h</td>
</tr>
<tr>
<td>N° of compressors</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
</tr>
<tr>
<td>Gross total cooling Capacity<sup>1</sup> kW</td>
</tr>
<tr>
<td>Gross sensible cooling Capacity<sup>1</sup> kW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length mm</td>
</tr>
<tr>
<td>Depth mm</td>
</tr>
</tbody>
</table>

TDAV – TUAV MODEL	1022A	1121A	1122A	1321A	1322A	1422A	1622A
Fans nr	1	1	2	2	2	2	2
Airflow m³/h	8600	12320	12320	12320	12320	16300	16500
N° of compressors	2	2	2	2	2	2	2
Refrigerating circuits	2	1	2	1	2	2	2
Gross total cooling capacity¹ kW	37,3	37,6	37,9	48,1	47,7	51,5	56,5
Gross sensible cooling capacity¹ kW	29,2	36,7	36,3	39,4	38,0	38,0	55,8

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length mm</td>
</tr>
<tr>
<td>Depth mm</td>
</tr>
</tbody>
</table>

TDAV – TUAV MODEL	1822A	2222A³	2242A³	2522A³	2542A³	2842A³	3342A³
Fans nr	2	3	3	3	3	3	3
Airflow m³/h	16500	21500	21500	21500	21500	21500	21500
N° of compressors	2	2	4	2	4	4	4
Refrigerating circuits	2	2	2	2	2	2	2
Gross total cooling capacity¹ kW	64,0	75,0	82,7	86,6	87,8	94,8	104,8
Gross sensible cooling capacity¹ kW	57,5	75,0	81,8	82,8	83,0	87,5	89,6

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length mm</td>
</tr>
<tr>
<td>Depth mm</td>
</tr>
</tbody>
</table>

TUAV MODEL	2222A	2242A	2522A	2542A	2842A	3342A
Fans nr	3	3	3	3	3	3
Airflow m³/h	22000	22000	22500	22500	23000	23000
N° of compressors	2	4	2	4	4	4
Refrigerating circuits	2	2	2	2	2	2
Gross total cooling capacity¹ kW	75,3	82,6	86,8	88,3	95,6	105,6
Gross sensible cooling capacity¹ kW	75,3	81,7	85,8	85,7	91,8	93,6

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length mm</td>
</tr>
<tr>
<td>Depth mm</td>
</tr>
</tbody>
</table>

¹ Gross cooling capacities; fans must be deducted to obtain net cooling data.
² Data refers to nominal conditions: Room at 24 °C-50% RH, 45 °C condensing temperature, and ESP = 20 Pa.
³ Data refers to downflow unit.
Direct-expansion air-cooled units with backward-curved fans equipped with EC motor and variable speed brushless compressors

Uniflair LE
IDAV

Standard features
- Brushless Variable Speed Scroll DC compressor.
- Units in Tandem Version (models **21) equipped with one Brushless compressor and one fixed speed compressor.
- Advanced microprocessor control system with a local or remote user terminal.
- The units are equipped with EC fans for efficiency maximization.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat and sound-proofing insulation.
- Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the cooling precision and the energy efficiency of the cooling cycle.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section.
- The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- Internal water-cooled condenser braze is welded and made of AISI 304 stainless steel.
- Uniflair LE units meet the following directives: 2006/42/EC, 2004/108/EC, 2006/95/EC, 97/23/EC, 842/2006/EC.
- F-GAS regulation.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- Total front access is available for unit maintenance.
- The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.
- Advanced microprocessor control UG50.
- Free-contact for general alarm and 2 for addressable alarms.
- Remote on/off switch.
- Integrated RS485 serial card for direct connection external BMS (modbus).
- Second slot for additional serial card for BMS connection (optional).
- Clock card integrated in the unit.
- Discharge temperature control (option).

Construction Options
- Intelligent dehumidification integrated in the unit.
- Advanced microprocessor control system UG50 is included.
- Integrated discharge temperature control and room moisture control.

Accessories
- The units can be supplied with the following external accessories:
 - Double power supply with automatic changeover and manual selection with integrated ultra capacitor (ETO).
 - Automatic floor pressurization system.
 - Energy meter and CO2 emissions calculator integrated in the unit (ETO).
 - Ultra capacitor for single power supply units.
 - Direct free-cooling (on demand).
 - Air-cooled condensers equipped with EC fans.

Range
- Cooling capacity: 20 ÷ 100 kW
- Refrigerant R-410A
- Brushless compressors
- EC fans

Available versions:
- Downflow air cooled

Cooling capacity: 20 ÷ 100 kW
Refrigerant R-410A
Brushless compressors
EC fans
Available versions:
- Downflow air cooled
<table>
<thead>
<tr>
<th>IDAV</th>
<th>0601A</th>
<th>0611A</th>
<th>1021A</th>
<th>1321A</th>
<th>1421A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan type</td>
<td>EC backward-curved centrifugal motor fan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>V/ph/Hz</td>
<td>400/3/50 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fans</td>
<td>nr.</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Airflow</td>
<td>m³/h</td>
<td>4500</td>
<td>5700</td>
<td>8600</td>
<td>12320</td>
</tr>
<tr>
<td>Compressors</td>
<td>1</td>
<td>1</td>
<td>1+1</td>
<td>1+1</td>
<td>1+1</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gross total cooling Capacity</td>
<td>kW</td>
<td>23.1</td>
<td>23.4</td>
<td>31.4</td>
<td>39.3</td>
</tr>
<tr>
<td>Gross sensible cooling Capacity</td>
<td>kW</td>
<td>16.6</td>
<td>20.2</td>
<td>26.3</td>
<td>35.3</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>mm</td>
<td>1740</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
</tr>
<tr>
<td>Length</td>
<td>mm</td>
<td>1200</td>
<td>1010</td>
<td>1310</td>
<td>1710</td>
</tr>
<tr>
<td>Depth</td>
<td>mm</td>
<td>450</td>
<td>750</td>
<td>865</td>
<td>865</td>
</tr>
</tbody>
</table>

1 Gross cooling capacities; fans must be deducted to obtain net cooling data.
2 Data refers to nominal conditions: Room at 24 °C-50% RH, 45 °C condensing temperature, and ESP = 20 Pa.
Standard features

- Advanced microprocessor control system is available with local or remote user terminal.
- The units are equipped with backward-curved fans and directly coupled asynchronous motor.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heatand sound-proofing insulation.
- Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the precision of the cooling and the energy efficiency of the cooling cycle.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- Internal water-cooled condenser braze is welded and made of AISI 304 stainless steel.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- The Uniflair LE range offers the possibility to select units equipped with two compressors (tandem) for each circuit, which grants better efficiency and regulation capacity at partial loads (models with the **21 or **42 suffix).
- Total front access is available for unit maintenance.
- The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.

- Microprocessor control system includes:
 - Integrated management of the EEV and refrigerating circuit parameters
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general and two for addressable alarms
 - Remote on/off switch
 - Ability to interface with modbus protocol directly on RS485 serial card
 - Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform
Construction options

- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with double safety thermostat and manual resetting (T/H versions)
- Hot gas and hot water reheating
- Condensation control on refrigerant side with constant water flow

Accessories

The units can be supplied with the following external accessories:

- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- AFPS that can be adapted as a kit with installation instructions
- Motorized damper
- Condensate drain pump
- Suction from the top or front discharge plenums
- Adjustable floor stands

TECHNICAL DATA

<table>
<thead>
<tr>
<th>TDWR – TUWR MODEL</th>
<th>0611A</th>
<th>0921A</th>
<th>1321A</th>
<th>1622A</th>
<th>1822A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backward-curved centrifugal motor fan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>V/ph/Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400/3/50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fans</td>
<td>nr</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Airflow</td>
<td>m³/h</td>
<td>5833</td>
<td>7933</td>
<td>12267</td>
<td>16406</td>
</tr>
<tr>
<td>N° of compressors</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gross total cooling capacity</td>
<td>kW</td>
<td>24,1</td>
<td>32,1</td>
<td>45,5</td>
<td>56,8</td>
</tr>
<tr>
<td>Gross sensible cooling capacity</td>
<td>kW</td>
<td>21,7</td>
<td>27,2</td>
<td>38,0</td>
<td>55,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TDWR MODEL</th>
<th>2242A</th>
<th>2542A</th>
<th>2842A</th>
<th>3342A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans</td>
<td>nr</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Airflow</td>
<td>m³/h</td>
<td>21656</td>
<td>22046</td>
<td>22055</td>
</tr>
<tr>
<td>N° of compressors</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gross total cooling capacity</td>
<td>kW</td>
<td>85,7</td>
<td>92,6</td>
<td>99,9</td>
</tr>
<tr>
<td>Gross sensible cooling capacity</td>
<td>kW</td>
<td>82,1</td>
<td>84,2</td>
<td>90,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Length</td>
</tr>
<tr>
<td>Depth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TUWR MODEL</th>
<th>2242A</th>
<th>2542A</th>
<th>2842A</th>
<th>3342A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans</td>
<td>nr</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Airflow</td>
<td>m³/h</td>
<td>22154</td>
<td>23467</td>
<td>23068</td>
</tr>
<tr>
<td>N° of compressors</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gross total cooling capacity</td>
<td>kW</td>
<td>86,0</td>
<td>93,4</td>
<td>100,5</td>
</tr>
<tr>
<td>Gross sensible cooling capacity</td>
<td>kW</td>
<td>83,4</td>
<td>87,9</td>
<td>93,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Length</td>
</tr>
<tr>
<td>Depth</td>
</tr>
</tbody>
</table>

1 Gross cooling capacities; fans must be deduced to obtain net cooling data.
2 Data refers to nominal conditions: Room at 24 °C-50% RH, water temperatures 30 – 35 °C, and ESP = 20 Pa.
Standard features

- Advanced microprocessor control system with a local or remote user terminal.
- The units are equipped with EC fans for efficiency maximization.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heatand sound-proofing insulation.
- Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the precision of the cooling and the energy efficiency of the cooling cycle.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- Internal water-cooled condenser braze is welded and made of AISI 304 stainless steel.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- The Uniflair LE range offers the possibility to select units equipped with two compressors (tandem) for each circuit, which grants better efficiency and regulation capacity at partial loads (models with the **21 or **42 suffix).
- Total front access is available for unit maintenance.
- The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.
- Microprocessor control system includes:
 - Integrated management of the EEV and refrigerating circuit parameters
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general and two for addressable alarms
 - Remote on/off switch
 - Ability to interface with modbus protocol directly on RS485 serial card
 - Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform
Construction options

- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with double safety thermostat and manual resetting (T/H versions)
- Hot gas and hot water reheating
- Condensation control on refrigerant side with constant water flow

Accessories

The units can be supplied with the following external accessories:

- Remote, semi-graphic user terminal
- RS485 serial adapter to communicate with external BMS
- LON FTT10 serial adapter to communicate with external BMS managed with LON protocol
- TCP/IP serial adapter to communicate with external BMS managed with SNMP protocol
- AFPS that can be adapted as a kit with installation instructions
- Motorized damper
- Condensate drain pump
- Suction from the top or front discharge plenums
- Adjustable floor stands

TECHNICAL DATA

<table>
<thead>
<tr>
<th></th>
<th>TDWV – TUWV MODEL</th>
<th>0611A</th>
<th>0921A</th>
<th>1321A</th>
<th>1622A</th>
<th>1822A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan type</td>
<td></td>
<td>EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply V/ph/Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fans nr.</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td></td>
<td>5700</td>
<td>8600</td>
<td>12320</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>N° of compressors</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gross total cooling capacity kW</td>
<td></td>
<td>24,0</td>
<td>32,5</td>
<td>45,6</td>
<td>56,7</td>
<td>62,3</td>
</tr>
<tr>
<td>Gross sensible cooling capacity kW</td>
<td></td>
<td>21,3</td>
<td>28,6</td>
<td>38,1</td>
<td>54,3</td>
<td>55,2</td>
</tr>
<tr>
<td>Height mm</td>
<td></td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
</tr>
<tr>
<td>Length mm</td>
<td></td>
<td>1010</td>
<td>1310</td>
<td>1720</td>
<td>2170</td>
<td>2170</td>
</tr>
<tr>
<td>Depth mm</td>
<td></td>
<td>750</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>750</td>
</tr>
<tr>
<td>TDWV MODEL</td>
<td></td>
<td>2242A</td>
<td>2542A</td>
<td>2842A</td>
<td>3342A</td>
<td></td>
</tr>
<tr>
<td>Fans nr.</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td></td>
<td>21500</td>
<td>21500</td>
<td>21500</td>
<td>21500</td>
<td></td>
</tr>
<tr>
<td>N° of compressors</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gross total cooling capacity kW</td>
<td></td>
<td>85,7</td>
<td>92,3</td>
<td>99,5</td>
<td>110,7</td>
<td></td>
</tr>
<tr>
<td>Gross sensible cooling capacity kW</td>
<td></td>
<td>81,6</td>
<td>82,8</td>
<td>88,8</td>
<td>90,8</td>
<td>90,8</td>
</tr>
<tr>
<td>Height mm</td>
<td></td>
<td>1960</td>
<td>2150</td>
<td>2150</td>
<td>2150</td>
<td>2150</td>
</tr>
<tr>
<td>Length mm</td>
<td></td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
</tr>
<tr>
<td>Depth mm</td>
<td></td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
</tr>
<tr>
<td>TUWV MODEL</td>
<td></td>
<td>2242A</td>
<td>2542A</td>
<td>2842A</td>
<td>3342A</td>
<td></td>
</tr>
<tr>
<td>Fans nr.</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td></td>
<td>22000</td>
<td>22500</td>
<td>23000</td>
<td>23000</td>
<td></td>
</tr>
<tr>
<td>N° of compressors</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gross total cooling capacity kW</td>
<td></td>
<td>85,9</td>
<td>92,9</td>
<td>100,4</td>
<td>111,7</td>
<td></td>
</tr>
<tr>
<td>Gross sensible cooling capacity kW</td>
<td></td>
<td>83,0</td>
<td>85,4</td>
<td>92,9</td>
<td>94,6</td>
<td>94,6</td>
</tr>
<tr>
<td>Height mm</td>
<td></td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
</tr>
<tr>
<td>Length mm</td>
<td></td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
</tr>
<tr>
<td>Depth mm</td>
<td></td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
</tr>
</tbody>
</table>

¹ Gross cooling capacities; fans must be deducted to obtain net cooling data.
² Data refers to nominal conditions: Room at 24 °C -50% RH, water temperatures 30 – 35 °C, and ESP = 20 Pa.
Standard features

- Advanced microprocessor control system UG50 with Touch screen human interface is included.
- The units are equipped with the latest generation Radical EC Fans for efficiency maximization. Impellers are made of high-tech compound material with optimized flow control, combined with highly efficient GreenTech EC motors. These fans are designed to have easier serviceability with quick removal kit.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat and sound-proofing insulation. The internal panels are featured by captive screws.
- The unit can be selected with a two-way or three-way valve and an actuator integrated with the microprocessor. The actuator is available in two versions: basic and premium.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminium fins, complete with a hydrophilic treatment.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- A low airflow differential pressure alarm switch is included.
- Single coil version with one chilled water circuit.
- CW inlet temperature measurement is integrated in the microprocessor.
- Integrated Discharge Temperature Control and Room Moisture Control.
- Zinc-free CW circuit.
- Full frontal accessibility is available for maintenance.
- Phase sequence control
- Microprocessor control system includes:
 - Adjustable fan speed meets energy-saving and load-sharing logics
 - 7-inch, touch-screen LCD display interface
 - Integration with Uniflair Chillers for optimized management logics
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general and two for addressable alarms
 - Remote on/off switch
 - Integrated RS485 serial card for direct connection to external BMS (modbus)
 - Integrated TCP/IP serial card for BMS connection
 - Clock card integrated in the unit
 - USB integrated in the display interface
 - Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP SNMP, and StruxureWare platform
Construction options

- Single power supply with Ultracapacitor
- Double power supply with automatic integrated management on the active line
- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with double safety thermostat and manual resetting (T/H versions)
- Dual coil version equipped with two separate chilled water circuits equipped with 2 or 3 way valve
- CW outlet temperature measurement integrated in the microprocessor
- Intelligent dehumidification with cooling capacity limiting device
- Energy meter and CO2 emission calculator
- Flow meter
- Pressure-independent Balancing and Control Valve (PIBCV)

Accessories

The units can be supplied with the following external accessories:

- Additional RS485 serial adaptor to communicate with external BMS
- Additional TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- RS232 modem card
- PCONET card
- Motorized damper
- Suction from the top or front discharge plenums
- Adjustable floor stands
- Fire and smoke sensors
- Water leak detector
- Automatic Floor Pressurization System (AFPS) through Active Floor Control (AFC)
Energy-saving units with backward-curved fans

Uniflair LE
TDER – TUER

Standard features

• Advanced microprocessor control system is available with local or remote user terminal.
• The units are equipped with backward-curved fans with directly coupled asynchronous motor.
• The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heatand sound-proofing insulation.
• Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the precision of the cooling and the energy efficiency of the cooling cycle.
• The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
• The cooling coil is characterized by CW and direct expansion circuits interlaced to increase the efficiency of the unit in all running conditions.
• Unit is equipped with an indirect free cooling system that provides the required cooling capacity when the external temperature is lower than the internal ambient. Compressor power consumption is minimized while internal and external environments are kept separate.
• Internal water-cooled condenser braze is welded and made of AISI 304 stainless steel.
• High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
• The Uniflair LE range offers the possibility to select units equipped with two compressors (tandem) for each circuit, which grants better efficiency and regulation capacity at partial loads (models with the **21 or **42 suffix).
• Total front access is available for unit maintenance.
• The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.

Microprocessor control system includes:
- Integrated management of the EEV and refrigerating circuit parameters
- Local user terminal with external accessibility
- Integrated LAN card for local network connection
- of a group of CRACs
- Rotation and active stand-by management
- Free contact for general and two for addressable alarms
- Remote on/off switch
- Ability to interface with modbus protocol directly on RS485 serial card
- Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform

Construction options

• Immersed electrode humidifier (D/U versions)
• Low surface temperature electrical heaters with extended fans, complete with double safety thermostat and manual resetting (T/H versions)
• Hot gas and hot water reheating
• Condensation control on refrigerant side with constant water flow

Accessories

• The units can be supplied with the following external accessories:
• Remote, semi-graphic user terminal
• RS485 serial adaptor to communicate with external BMS
• LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
• TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
• AFPS that can be adapted as a kit with installation instructions
• Motorized damper
• Condensate drain pump
• Suction from the top or front discharge plenums
• Adjustable floor stands

Range

Cooling capacity: 20 ÷ 100 kW

Refrigerant R-410A

Available versions:
- Downflow (TDER)
- Upflow (TUER)
TECHNICAL DATA

<table>
<thead>
<tr>
<th>TDER – TUER MODEL</th>
<th>0511A</th>
<th>0611A</th>
<th>0721A</th>
<th>0722A</th>
<th>0921A</th>
<th>0922A</th>
<th>1021A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V/ph/Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nr</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n r.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Airflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m³/h</td>
<td>5827</td>
<td>5827</td>
<td>8541</td>
<td>8541</td>
<td>8541</td>
<td>8541</td>
<td>8541</td>
</tr>
<tr>
<td>N° of compressors</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gross total cooling capacity</td>
<td>kW</td>
<td>19.2</td>
<td>23.8</td>
<td>27.0</td>
<td>28.5</td>
<td>30.4</td>
<td>32.1</td>
</tr>
<tr>
<td>Gross sensible cooling capacity</td>
<td>kW</td>
<td>19.2</td>
<td>21.1</td>
<td>27.0</td>
<td>28.5</td>
<td>28.5</td>
<td>27.9</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length mm</td>
<td>1010</td>
<td>1010</td>
<td>1310</td>
<td>1310</td>
<td>1310</td>
<td>1310</td>
<td>1310</td>
</tr>
<tr>
<td>Depth mm</td>
<td>750</td>
<td>750</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TDER – TUER MODEL</th>
<th>1022A</th>
<th>1121A</th>
<th>1122A</th>
<th>1321A</th>
<th>1322A</th>
<th>1422A</th>
<th>1622A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nr</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>n r.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Airflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m³/h</td>
<td>8541</td>
<td>13277</td>
<td>13277</td>
<td>13277</td>
<td>13277</td>
<td>15906</td>
<td>15906</td>
</tr>
<tr>
<td>N° of compressors</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gross total cooling capacity</td>
<td>kW</td>
<td>37.1</td>
<td>37.3</td>
<td>39.3</td>
<td>47.0</td>
<td>50.2</td>
<td>49.6</td>
</tr>
<tr>
<td>Gross sensible cooling capacity</td>
<td>kW</td>
<td>30.3</td>
<td>37.3</td>
<td>39.3</td>
<td>42.3</td>
<td>41.5</td>
<td>49.6</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length mm</td>
<td>1010</td>
<td>1720</td>
<td>1720</td>
<td>1720</td>
<td>2170</td>
<td>2170</td>
<td>2170</td>
</tr>
<tr>
<td>Depth mm</td>
<td>750</td>
<td>750</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TDER MODEL</th>
<th>1822A</th>
<th>2222A</th>
<th>2242A</th>
<th>2522A</th>
<th>2542A</th>
<th>2842A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nr</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>n r.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Airflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m³/h</td>
<td>15906</td>
<td>21809</td>
<td>21809</td>
<td>21809</td>
<td>21809</td>
<td>21809</td>
</tr>
<tr>
<td>N° of compressors</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gross total cooling capacity</td>
<td>kW</td>
<td>60.5</td>
<td>78.4</td>
<td>83.6</td>
<td>66.2</td>
<td>67.9</td>
</tr>
<tr>
<td>Gross sensible cooling capacity</td>
<td>kW</td>
<td>55.8</td>
<td>72.0</td>
<td>78.3</td>
<td>75.0</td>
<td>75.5</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height mm</td>
<td>1960</td>
<td>2150</td>
<td>2150</td>
<td>2150</td>
<td>2150</td>
<td>2150</td>
</tr>
<tr>
<td>Length mm</td>
<td>2170</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
</tr>
<tr>
<td>Depth mm</td>
<td>750</td>
<td>750</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TUER MODEL</th>
<th>2222A</th>
<th>2242A</th>
<th>2522A</th>
<th>2542A</th>
<th>2842A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nr</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>n r.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Airflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m³/h</td>
<td>22160</td>
<td>22160</td>
<td>23194</td>
<td>23194</td>
<td>23194</td>
</tr>
<tr>
<td>N° of compressors</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gross total cooling capacity</td>
<td>kW</td>
<td>78.5</td>
<td>83.8</td>
<td>86.8</td>
<td>88.7</td>
</tr>
<tr>
<td>Gross sensible cooling capacity</td>
<td>kW</td>
<td>72.7</td>
<td>79.2</td>
<td>77.8</td>
<td>78.3</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height mm</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
</tr>
<tr>
<td>Length mm</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
</tr>
<tr>
<td>Depth mm</td>
<td>750</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
</tr>
</tbody>
</table>

1. Gross cooling capacities; fans must be deducted to obtain net cooling data.
2. Data refers to nominal conditions: Room at 24 °C-50% RH, water temperatures 30 – 35 °C, and ESP = 20 Pa.
3. Data refers to nominal conditions: Room at 24 °C-50% RH, water temperature 7/12 °C, glycol 0%, and ESP = 20 Pa.
4. Data refers to downflow unit.
Standard features

- Advanced microprocessor control system is available with local or remote user terminal.
- The units are equipped with EC fans for efficiency maximization.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heatand sound-proofing insulation.
- Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the precision of the cooling and the energy efficiency of the cooling cycle.
- Unit is equipped with an indirect free cooling system that provides the required cooling capacity when the external temperature is lower than the internal ambient. Compressor power consumption is minimized while internal and external environments are kept separate.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- The cooling coil is characterized by CW and direct expansion circuits interlaced to increase the efficiency of the unit in all running conditions.
- Internal water-cooled condenser braze is welded and made of AISI 304 stainless steel.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- The Uniflair LE range offers the possibility to select units equipped with two compressors (tandem) for each circuit, which grants better efficiency and regulation capacity at partial loads (models with the **21 or **42 suffix).
- Total front access is available for unit maintenance.
- The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.

- Microprocessor control system includes:
 - Integrated management of the cooling modes monitoring room temperature, external temperature, and glycol circuit temperature
 - Integrated management of the EEV and refrigerating circuit parameters
 - Local user terminal with external accessibility
 - Integrated LAN card for local network connection of a group of CRACs
 - Rotation and active stand-by management
 - Free contact for general and two for addressable alarms
 - Remote on/off switch
 - Ability to interface with modbus protocol directly on RS485 serial card
 - Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform

Construction options

- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with double safety thermostat and manual resetting (T/H versions)
- Hot gas and hot water reheating

Accessories

The units can be supplied with the following external accessories:

- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- AFPS that can be adapted as a kit with installation instructions
- Motorized damper
- Condensate drain pump
- Suction from the top or front discharge plenums
- Adjustable floor stands
TECHNICAL DATA

<table>
<thead>
<tr>
<th>Model</th>
<th>0511A</th>
<th>0611A</th>
<th>0721A</th>
<th>0722A</th>
<th>0921A</th>
<th>0922A</th>
<th>1021A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>V/ph/HZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fans nr</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>5700</td>
<td>5700</td>
<td>8600</td>
<td>8600</td>
<td>8600</td>
<td>8600</td>
<td>8600</td>
</tr>
<tr>
<td>N° of compressors</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gross total cooling capacity 1,2 kW</td>
<td>19.1</td>
<td>23.7</td>
<td>27.0</td>
<td>28.4</td>
<td>30.4</td>
<td>32.2</td>
<td>34.6</td>
</tr>
<tr>
<td>Gross sensible cooling capacity 1,2 kW</td>
<td>19.1</td>
<td>20.8</td>
<td>27.0</td>
<td>28.4</td>
<td>28.7</td>
<td>28.0</td>
<td>30.5</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length mm</td>
<td>1010</td>
<td>1010</td>
<td>1310</td>
<td>1310</td>
<td>1310</td>
<td>1310</td>
<td>1310</td>
</tr>
<tr>
<td>Depth mm</td>
<td>750</td>
<td>750</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
</tr>
</tbody>
</table>

TDEV – TUEV MODEL 1022A 1121A 1122A 1321A 1322A 1422A 1622A

Fans nr	1	1	2	2	2	2	2
Airflow m³/h	8600	12320	12320	12320	12320	16000	16000
N° of compressors	2	2	2	2	2	2	2
Gross total cooling capacity 1,2 kW	37.1	36.9	39.2	46.6	49.7	49.7	55.9
Gross sensible cooling capacity 1,2 kW	30.4	36.9	37.4	40.3	39.9	46.9	55.9
DIMENSIONS							
Length mm	1010	1720	1720	1720	1720	2170	2170
Depth mm	750	750	865	865	865	865	865

TDEV – TUEV MODEL 1822A 2222A 2242A 2522A 2542A 2842A

Fans nr	2	3	3	3	3	3	3
Airflow m³/h	16000	21500	21500	21500	21500	21500	21500
N° of compressors	2	2	4	2	4	2	4
Gross total cooling capacity 1,2 kW	60.5	78.2	83.5	86.1	87.7	95.8	
Gross sensible cooling capacity 1,2 kW	56.0	71.3	77.6	74.4	74.9	77.1	
DIMENSIONS							
Height mm	1960	2150	2150	2150	2150	2150	2150
Length mm	2170	2580	2580	2580	2580	2580	2580
Depth mm	750	750	865	865	865	865	865

TUEV MODEL 2222A 2242A 2522A 2542A 2842A

Fans nr	3	3	3	3	3	3	3
Airflow m³/h	22000	22000	22000	22000	22000	22000	22000
N° of compressors	2	4	2	4	4	2	2
Gross total cooling capacity 1,2 kW	78.4	83.7	86.3	88.3	90.4		
Gross sensible cooling capacity 1,2 kW	72.4	78.8	75.4	76.9	79.0		
DIMENSIONS							
Length mm	2580	2580	2580	2580	2580	2580	2580
Depth mm	750	865	865	865	865	865	865
Twin-cool air-cooled units with backward curved fans

Uniflair LE
TDTR – TUTR

Standard features

• Advanced microprocessor control system is available with local or remote user terminal.
• The units are equipped with backward-curved fans and directly coupled asynchronous motor.
• The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat and sound-proofing insulation.
• Unit is characterized by two independent cooling sources – one CW with related circuit and one direct expansion air cooled.
• Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the cooling precision and the energy efficiency of the cooling cycle.
• The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
• High-efficiency EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
• The Uniflair LE range offers the possibility to select units equipped with two compressors (tandem) for each circuit, which grants better efficiency and regulation capacity at partial loads (models with the **21 or **42 suffix).
• Total front access is included for unit maintenance.
• The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.

Range
Cooling capacity: 20 ÷ 100 kW
Refrigerant R-410A
Available versions:
- Downflow (TDTR)
- Upflow (TUTR)

Microprocessor control system includes:
- Integrated management of the EEV and refrigerating circuit parameters
- Local user terminal with external accessibility
- Integrated LAN card for local network connection of a group of CRACs
- Rotation and active stand-by management
- Free contact for general and two for addressable alarms
- Remote on/off switch
- Ability to interface with modbus protocol directly on RS485 serial card
- Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform.
construction options

- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with double safety thermostat and manual resetting (T/H versions)
- Hot gas and hot water reheating

Accessories

The units can be supplied with the following external accessories:

- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- AFPS that can be adapted as a kit with installation instructions
- Motorized damper
- Condensate drain pump
- Suction from the top or front discharge plenums
- Adjustable floor stands

```
<table>
<thead>
<tr>
<th>TECHNICAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>TDTR MODEL</strong></td>
</tr>
<tr>
<td><strong>Fan type</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Power supply</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Fans</strong></td>
</tr>
<tr>
<td><strong>Airflow</strong></td>
</tr>
<tr>
<td><strong>Refrigerating circuits</strong></td>
</tr>
<tr>
<td><strong>Gross total cooling capacity</strong>¹</td>
</tr>
<tr>
<td><strong>Gross sensible cooling capacity</strong>¹</td>
</tr>
<tr>
<td><strong>Gross total cooling capacity</strong>³</td>
</tr>
<tr>
<td><strong>Gross sensible cooling capacity</strong>³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Height</strong></td>
</tr>
<tr>
<td><strong>Length</strong></td>
</tr>
<tr>
<td><strong>Depth</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>TUTR MODEL</strong></th>
<th>2242A</th>
<th>2542A</th>
<th>2842A</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fans</strong></td>
<td>nr</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td><strong>Airflow</strong></td>
<td>m³/h</td>
<td>22160</td>
<td>23194</td>
</tr>
<tr>
<td><strong>Refrigerating circuits</strong></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td><strong>Gross total cooling capacity</strong></td>
<td>kW</td>
<td>82.7</td>
<td>82.5</td>
</tr>
<tr>
<td><strong>Gross sensible cooling capacity</strong>²</td>
<td>kW</td>
<td>79.0</td>
<td>77.1</td>
</tr>
<tr>
<td><strong>Gross total cooling capacity</strong>³</td>
<td>kW</td>
<td>98.8</td>
<td>102.3</td>
</tr>
<tr>
<td><strong>Gross sensible cooling capacity</strong>³</td>
<td>kW</td>
<td>97.9</td>
<td>101.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Height</strong></td>
</tr>
<tr>
<td><strong>Length</strong></td>
</tr>
<tr>
<td><strong>Depth</strong></td>
</tr>
</tbody>
</table>

¹ Gross cooling capacities; fans must be deducted to obtain net cooling data.
² Data refers to nominal conditions: Room at 24 °C-50% RH, water temperatures 30 – 35 °C, and ESP = 20 Pa.
³ Data refers to nominal conditions: Room at 24 °C-50% RH, water temperature 7/12 °C, glycol 0%, and ESP = 20 Pa.
⁴ Data refers to downflow unit.
Uniflair LE
TDTV – TUTV

Standard features

- Advanced microprocessor control system is available with local or remote user terminal.
- The units are equipped with EC fans for efficiency maximization.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heatand sound-proofing insulation.
- Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the cooling precision and the energy efficiency of the cooling cycle.
- Unit is characterized by two independent cooling sources – one CW with related circuit and one direct expansion air cooled.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- The cooling coil is characterized by CW and direct expansion circuits interlaced to increase the efficiency of the unit in all running conditions.
- The CW circuit is equipped with a three-way valve and an actuator integrated with the microprocessor.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.

- The Uniflair LE range offers the possibility to select units equipped with two compressors (tandem) for each circuit, which grants better efficiency and regulation capacity at partial loads (models with the **21 or **42 suffix).
- Total front access is included for unit maintenance.
- The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.
- Microprocessor control system includes:
  - Integrated management of the EEV and refrigerating circuit parameters
  - Local user terminal with external accessibility
  - Integrated LAN card for local network connection of a group of CRACs
  - Rotation and active stand-by management
  - Free contact for general and two for addressable alarms
  - Remote on/off switch
  - Ability to interface with modbus protocol directly on RS485 serial card
  - Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform

Range
Cooling capacity: 20 ÷ 100 kW
Refrigerant R-410A
EC fans
Available versions:
- Downflow (TDTV)
- Upflow (TUTV)
**Construction options**

- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with double safety thermostat and manual resetting (T/H versions)
- Hot gas and hot water reheating

**Accessories**

The units can be supplied with the following external accessories:

- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- AFPS that can be adapted as a kit with installation instructions
- Motorized damper
- Condensate drain pump
- Suction from the top or front discharge plenums
- Adjustable floor stands

---

**TECHNICAL DATA**

<table>
<thead>
<tr>
<th>TDTV MODEL</th>
<th>0611A</th>
<th>0921A</th>
<th>1321A</th>
<th>1622A</th>
<th>1822A</th>
<th>2242A</th>
<th>2542A</th>
<th>2842A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan type</td>
<td>EC backward-curved centrifugal motor fan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>V/ph/Hz</td>
<td>400/3/50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fans nr.</td>
<td>1 1 2 2 2 3 3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>5700 8600 12320 16000 16000 21500 21500 21500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° of compressors</td>
<td>1 2 2 2 2 4 4 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>1 1 1 2 2 2 2 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross total cooling capacity kW</td>
<td>23.5 30.3 46.5 58.5 63.4 82.4 81.6 91.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross sensible cooling capacity kW</td>
<td>20.6 28.7 39.8 55.6 55.5 77.4 73.4 75.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**DIMENSIONS**

| Height mm | 1960 1960 1960 1960 1960 2150 2150 2150 |
| Length mm | 1010 1310 1720 2170 2170 2580 2580 2580 |
| Depth mm | 750 865 865 865 750 865 865 865 |

---

<table>
<thead>
<tr>
<th>TUTV MODEL</th>
<th>2242A</th>
<th>2542A</th>
<th>2842A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans nr.</td>
<td>3 3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>22000 22500 22500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° of compressors</td>
<td>4 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>2 2 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross total cooling capacity kW</td>
<td>82.6 82.1 91.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross sensible cooling capacity kW</td>
<td>78.6 75.5 77.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**DIMENSIONS**

| Height mm | 1960 1960 1960 |
| Length mm | 2580 2580 2580 |
| Depth mm | 865 865 865 |

---

1 Gross cooling capacities; fans must be deduced to obtain net cooling data.
2 Data refers to nominal conditions: Room at 24 °C-50% RH, 45 °C condensing temperature, and ESP = 20 Pa.
3 Data refer to nominal conditions: Room at 24 °C-50% RH, water temperature 7/12 °C, glycol 0%, and ESP = 20 Pa.
Twin-cool water-cooled units with backward-curved fans

Uniflair LE
TDDR – TUDR

Standard features

- Advanced microprocessor control system is available with local or remote user terminal.
- The units are equipped with backward-curved fans and directly coupled asynchronous motor.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat- and sound-proofing insulation.
- Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the precision of the cooling and the energy efficiency of the cooling cycle.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- Internal water-cooled condenser braze is welded and made of AISI 304 stainless steel.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- The Uniflair LE range offers the possibility to select units equipped with two compressors (tandem) for each circuit, which grants better efficiency and regulation capacity at partial loads (models with the **21 or **42 suffix).
- Total front access is included for unit maintenance.
- The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.

- Microprocessor control system includes:
  - Integrated management of the EEV and refrigerating circuit parameters
  - Local user terminal with external accessibility
  - Integrated LAN card for local network connection of a group of CRACs
  - Rotation and active stand-by management
  - Free contact for general and two for addressable alarms
  - Remote on/off switch
  - Ability to interface with modbus protocol directly on RS485 serial card
  - Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform

Range
- Cooling capacity: 20 ÷ 100 kW
- Refrigerant R-410A
- Available versions:
  - Downflow (TDDR)
  - Upflow (TUDR)
Construction options

- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with double safety thermostat and manual resetting (T/H versions)
- Hot gas and hot water reheating
- Condensation control on refrigerant side with constant water flow

Accessories

The units can be supplied with the following external accessories:

- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- AFPS that can be adapted as a kit with installation instructions
- Motorized damper
- Condensate drain pump
- Suction from the top or front discharge plenums
- Adjustable floor stands

### TECHNICAL DATA

<table>
<thead>
<tr>
<th>TDDR MODELS</th>
<th>611</th>
<th>921</th>
<th>1321</th>
<th>1622</th>
<th>1822</th>
<th>2242</th>
<th>2542</th>
<th>2842</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan type</td>
<td>Backward curved centrifugal motor fan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>V/ph/Hz</td>
<td>400/3/50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fans n</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>5827</td>
<td>8541</td>
<td>11574</td>
<td>15905</td>
<td>15905</td>
<td>21809</td>
<td>21709</td>
<td>21809</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>N° of compressors</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Refrigeration circuits</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gross total cooling capacity kW</td>
<td>23.8</td>
<td>30.4</td>
<td>46.2</td>
<td>55.9</td>
<td>60.5</td>
<td>90.5</td>
<td>87.8</td>
<td>96.0</td>
</tr>
<tr>
<td>Gross sensible cooling capacity kW</td>
<td>21.1</td>
<td>28.5</td>
<td>38.8</td>
<td>55.9</td>
<td>55.8</td>
<td>79.7</td>
<td>75.3</td>
<td>77.7</td>
</tr>
<tr>
<td>Gross total cooling capacity kW</td>
<td>20.5</td>
<td>28.3</td>
<td>38.6</td>
<td>53.9</td>
<td>53.9</td>
<td>97.6</td>
<td>97.3</td>
<td>97.6</td>
</tr>
<tr>
<td>Gross sensible cooling capacity kW</td>
<td>20.4</td>
<td>28.2</td>
<td>38.4</td>
<td>53.7</td>
<td>53.7</td>
<td>96.7</td>
<td>96.4</td>
<td>96.7</td>
</tr>
</tbody>
</table>

### DIMENSIONS

<table>
<thead>
<tr>
<th>TDDR MODELS</th>
<th>2242</th>
<th>2542</th>
<th>2842</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height mm</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
</tr>
<tr>
<td>Length mm</td>
<td>1010</td>
<td>1310</td>
<td>1720</td>
</tr>
<tr>
<td>Depth mm</td>
<td>750</td>
<td>865</td>
<td>865</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TUDR MODELS</th>
<th>2542A</th>
<th>2842A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans n</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>22160</td>
<td>23194</td>
</tr>
<tr>
<td>N° of compressors</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Refrigeration circuits</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gross total cooling capacity kW</td>
<td>90.6</td>
<td>88.7</td>
</tr>
<tr>
<td>Gross sensible cooling capacity kW</td>
<td>80.5</td>
<td>78.3</td>
</tr>
<tr>
<td>Gross total cooling capacity kW</td>
<td>98.8</td>
<td>102.3</td>
</tr>
<tr>
<td>Gross sensible cooling capacity kW</td>
<td>97.9</td>
<td>101.3</td>
</tr>
</tbody>
</table>

### DIMENSIONS

<table>
<thead>
<tr>
<th>TUDR MODELS</th>
<th>2242</th>
<th>2542</th>
<th>2842</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height mm</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
</tr>
<tr>
<td>Length mm</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
</tr>
<tr>
<td>Depth mm</td>
<td>865</td>
<td>865</td>
<td>865</td>
</tr>
</tbody>
</table>
Standard features

- Advanced microprocessor control system is available with local or remote user terminal.
- The units are equipped with EC fans for efficiency maximization.
- The structure of the unit is characterized by a self-supporting frame in galvanized steel with panels. The external panels are coated with RAL9003 epoxy-polyester paint and internally lined with heat and sound-proofing insulation.
- Electronic expansion valve is controlled by the microprocessor and a dedicated software that increases the precision of the cooling and the energy efficiency of the cooling cycle.
- Unit is characterized by two independent cooling sources – one CW with related circuit and one direct expansion water cooled.
- The cooling coil is designed for an elevated SHR and reduced pressure drops in the air section. The coil is made from copper tubes mechanically expanded on aluminum fins, complete with a hydrophilic treatment.
- The cooling coil is characterized by CW and direct expansion circuits interlaced to increase the efficiency of the unit in all running conditions.
- Internal water-cooled condenser braze is welded and made of AISI 304 stainless steel.
- The CW circuit is equipped with a three-way valve and an actuator integrated with the microprocessor.
- High-efficiency, EU4-pleated air filters are housed in a metal frame and equipped with a dirty filter differential pressure switch and low airflow differential pressure switch.
- The Uniflair LE range offers the possibility to select units equipped with two compressors (tandem) for each circuit, which grants better efficiency and regulation capacity at partial loads (models with the **21 or **42 suffix).
- Total front access is included for unit maintenance.
- The electrical panel is situated in a compartment separated from the airflow and complies with the 2006/95/EC directive and related standards.
- Microprocessor control system includes:
  - Integrated management of the EEV and refrigerating circuit parameters
  - Local user terminal with external accessibility
  - Integrated LAN card for local network connection of a group of CRACs
  - Rotation and active stand-by management
  - Free contact for general and two for addressable alarms
  - Remote on/off switch
  - Ability to interface with modbus protocol directly on RS485 serial card
  - Ability to interface with main external communication protocols: BACnet, Lonworks, Trend, Metasys, TCP/IP, SNMP, and StruxureWare platform.
### Construction options

- Immersed electrode humidifier (D/U versions)
- Low surface temperature electrical heaters with extended fans, complete with double safety thermostat and manual resetting (T/H versions)
- Hot gas and hot water reheating
- Condensation control on refrigerant side with constant water flow

### Accessories

The units can be supplied with the following external accessories:

- Remote, semi-graphic user terminal
- RS485 serial adaptor to communicate with external BMS
- LON FTT10 serial adaptor to communicate with external BMS managed with LON protocol
- TCP/IP serial adaptor to communicate with external BMS managed with SNMP protocol
- AFPS that can be adapted as a kit with installation instructions
- Motorized damper
- Condensate drain pump
- Suction from the top or front discharge plenums
- Adjustable floor stands

### TECHNICAL DATA

<table>
<thead>
<tr>
<th>TDDV MODEL</th>
<th>0611A</th>
<th>0921A</th>
<th>1321A</th>
<th>1622A</th>
<th>1822A</th>
<th>2242A</th>
<th>2542A</th>
<th>2842A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply V/ph/Hz</td>
<td></td>
<td>400/3/50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fans</td>
<td>n</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>5700</td>
<td>8600</td>
<td>12320</td>
<td>16000</td>
<td>16000</td>
<td>21500</td>
<td>21500</td>
<td>21500</td>
</tr>
<tr>
<td>N° of compressors</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gross total cooling capacity kW</td>
<td>23.7</td>
<td>30.4</td>
<td>46.6</td>
<td>55.9</td>
<td>60.5</td>
<td>90.3</td>
<td>87.7</td>
<td>95.8</td>
</tr>
<tr>
<td>Gross sensible cooling capacity kW</td>
<td>20.8</td>
<td>28.7</td>
<td>40.3</td>
<td>55.9</td>
<td>56.0</td>
<td>79.0</td>
<td>74.9</td>
<td>77.1</td>
</tr>
<tr>
<td>Gross total cooling capacity kW</td>
<td>20.2</td>
<td>28.5</td>
<td>40.1</td>
<td>54.1</td>
<td>54.1</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
</tr>
<tr>
<td>Gross sensible cooling capacity kW</td>
<td>20.1</td>
<td>28.3</td>
<td>39.9</td>
<td>53.9</td>
<td>53.9</td>
<td>95.7</td>
<td>95.7</td>
<td>95.7</td>
</tr>
</tbody>
</table>

### DIMENSIONS

<table>
<thead>
<tr>
<th>TDDV MODEL</th>
<th>0611A</th>
<th>0921A</th>
<th>1321A</th>
<th>1622A</th>
<th>1822A</th>
<th>2242A</th>
<th>2542A</th>
<th>2842A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height mm</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
<td>2150</td>
<td>2150</td>
<td>2150</td>
</tr>
<tr>
<td>Length mm</td>
<td>1010</td>
<td>1310</td>
<td>1720</td>
<td>2170</td>
<td>2170</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
</tr>
<tr>
<td>Depth mm</td>
<td>750</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>750</td>
<td>865</td>
<td>865</td>
<td>865</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TUDV MODEL</th>
<th>2242A</th>
<th>2542A</th>
<th>2842A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans nr</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>22000</td>
<td>22500</td>
<td>22500</td>
</tr>
<tr>
<td>N° of compressors</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Refrigerating circuits</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gross total cooling capacity kW</td>
<td>90.6</td>
<td>88.3</td>
<td>96.4</td>
</tr>
<tr>
<td>Gross sensible cooling capacity kW</td>
<td>80.1</td>
<td>76.9</td>
<td>79.0</td>
</tr>
<tr>
<td>Gross total cooling capacity kW</td>
<td>98.3</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Gross sensible cooling capacity kW</td>
<td>97.4</td>
<td>99.0</td>
<td>99.0</td>
</tr>
</tbody>
</table>

### DIMENSIONS

<table>
<thead>
<tr>
<th>TUDV MODEL</th>
<th>2242A</th>
<th>2542A</th>
<th>2842A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height mm</td>
<td>1960</td>
<td>1960</td>
<td>1960</td>
</tr>
<tr>
<td>Length mm</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
</tr>
<tr>
<td>Depth mm</td>
<td>865</td>
<td>865</td>
<td>865</td>
</tr>
</tbody>
</table>

---

1. Gross cooling capacities; fans must be deducted to obtain net cooling data.
2. Data refers to nominal conditions: Room at 24 °C-50% RH, water temperatures 30 – 35 °C, and ESP = 20 Pa.
3. Data refers to nominal conditions: Room at 24 °C-50% RH, water temperature 7/12 °C, glycol 0%, and ESP = 20 Pa.
4. Data refers to downflow unit.
CW units with backward curved fans equipped with EC motor; fan module can be installed under or above raised floor

Uniflair LE
HDCV

Standard features

- Unit is made of two sections for installation of fan module under the raised floor and increase the coil surface for energy efficiency maximization.
- Advanced microprocessor control system UG50 is included.
- The units are equipped with the latest generation Radical EC fans for efficiency maximization. Impellers are made of high tech compound material with optimized flow control, combined with highly efficient GreenTech EC motors.
- Large surface copper and aluminum cooling coil is provided for pressure drop minimization.
- EC fan module is equipped with a circular plug in connectors for quick and failure-free installation; the module is supplied with safety protection grills on the sides in case of underfloor installation.
- Adjustable fan speed meets energy saving and load sharing logics.
- High efficiency, pleated air filters are housed in a metal frame and filter differential pressure switch.
- A low airflow differential pressure alarm switch is included.
- Full frontal accessibility is available for maintenance.
- CW inlet temperature measurement is integrated in the microprocessor.
- Integrated Discharge Temperature Control and Room Moisture Control.
- Zinc free CW circuit.
- Immersed electrode humidifier is included.
- Electrical heaters included with aluminum finned heating elements.
- Phase sequence control.

- Microprocessor control system in addition allows:
  - Integration with Uniflair Chillers for optimized management logics
  - Free contact for general and two for addressable alarms
  - Remote on/off switch
  - Integrated RS485 serial card for direct connection to external BMS (Modbus)
  - Second slot for additional serial card for BMS connection (optional)
  - Clock card integrated in the unit

Accessories

The units can be supplied with the following accessories:

- Double power supply with automatic changeover and manual selection with integrated ultra capacitor
- Intelligent dehumidification with cooling capacity limiting device
- Automatic floor pressurization system
- CW outlet temperature measurement integrated in the microprocessor
- Energy meter and CO2 emissions calculator integrated in the unit
- Ultra capacitor for single power supply units
- Direct free cooling
- Integrated base frame
- PIBCV valves
- Flowmeter

Range

Cooling Capacity: 30 ÷ 250 kW

Refrigerant CW

EC fans

Available versions:
- Downflow Single Coil
- Downflow Dual Coil
High-efficiency room air conditioners

TECHNICAL DATA

<table>
<thead>
<tr>
<th>HDCV MODEL</th>
<th>0800A</th>
<th>1300A</th>
<th>1400A</th>
<th>1700A</th>
<th>1800A</th>
<th>2500A</th>
<th>2900A</th>
<th>4100A</th>
<th>4600A</th>
<th>4800A</th>
<th>5100A</th>
<th>5300A</th>
<th>5500A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan type</td>
<td>EC backward-curved centrifugal motor fan</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Single coil</td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>V/ph/Hz</td>
<td>400/3/50</td>
<td></td>
</tr>
<tr>
<td>Fans nr</td>
<td>1 1 1 2 2 2 3 3 3 4 4 4</td>
<td></td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>10000 10000 13000 19000 19000 24000 24000 32000 31000 35000 35000 45000</td>
<td></td>
</tr>
<tr>
<td>Net sensible cooling kW</td>
<td>34.3 40.5 53.8 59.4 78.4 75.8 96.7 99 136 156.8 172.6 191</td>
<td></td>
</tr>
</tbody>
</table>

DIMENSIONS

<table>
<thead>
<tr>
<th>HDCV MODEL</th>
<th>0800A</th>
<th>1300A</th>
<th>1400A</th>
<th>1700A</th>
<th>1800A</th>
<th>2500A</th>
<th>4500</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height mm</td>
<td>2510 2510 2510 2510 2510 2510 2510 2510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length mm</td>
<td>1010 1310 1310 1720 1720 2170 2170 2570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth mm</td>
<td>865 865 865 865 865 865 865 865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Data refer to nominal conditions: Room at 35 °C-30% RH water temperature 18/24 °C, fan module installed under a 900 mm raised floor, and glycol 0%.

2 Includes fan module.

Cooling performance refers to one running CW circuit.

Construction options

Unit with fan plenum installed under the raised floor.

Unit with fan plenum installed above the raised floor.
Monoblock wall-mounted units for external installation with downflow air discharge

Uniflair WM
WDA – WDF

Standard features

- Monoblock conditioning units can be installed on the outside wall of the air conditioned room.
- Built-in air condenser is included. The units can be supplied completely assembled and filled with refrigerant; all the components are set in the factory for normal working conditions and the electrical and cooling functions are tested. Installation only requires simple electrical wiring and mechanical fixing to the shelter, even by nonspecialized personnel.
- The direct free-cooling units (WMF) are supplied with a motorized damper. During free-cooling the excess air is expelled from the room through the condenser section without using any extra overpressure dampers.
- Complete access to all the components allows servicing entirely from the outside, without having to enter the room which is normally protected by controlled access.

- The external screws are stainless steel, antitamper and can only be removed using special tools.
- The double external paneling is available in galvanized, painted sheet steel and gives separate access to the fan compartment and electric board compartments. This enables maintenance and regulation to be carried out without having to turn the unit off.
- Power Supply:
  - 400V/3+N/50Hz standard on Request
  - 230V/1/50Hz on 221 and 341 models
  - Main power supply + UPS 48 VDC (evaporator DC fan/s)
- Microprocessor control.
- Scroll compressor.
- EU4 filter (optional).
- Modulating condenser fan/s speed control.
- Free-cooling metal pre-filter.

Range
Cooling capacity: 6 ÷ 15 kW
Refrigerant R407C
Available versions:
- Without direct free-cooling (WDA)
- With direct free-cooling (WDF)

TECHNICAL DATA

<table>
<thead>
<tr>
<th>WDA – WDF MODEL</th>
<th>WDF0221A</th>
<th>WDF0341A</th>
<th>WDF0481A</th>
<th>WDF0501A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>V/ph/Hz</td>
<td>400/3+N/50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical cooling¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensible cooling capacity</td>
<td>kW</td>
<td>6.0/6.0</td>
<td>9.0/9.0</td>
<td>12.0/12.0</td>
</tr>
<tr>
<td>Airflow</td>
<td>m³/h</td>
<td>1650</td>
<td>2350</td>
<td>2900</td>
</tr>
<tr>
<td>COMPONENT FEATURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° of evaporator fans</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>N° of condenser fans</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Compressor power consumption¹</td>
<td>kW</td>
<td>1.25</td>
<td>1.94</td>
<td>3.56</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>mm</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
</tr>
<tr>
<td>Width</td>
<td>mm</td>
<td>950</td>
<td>950</td>
<td>950</td>
</tr>
<tr>
<td>Depth</td>
<td>mm</td>
<td>650</td>
<td>650</td>
<td>650</td>
</tr>
</tbody>
</table>

¹ Data refers to mechanical operation. Ambient temperature: 27 °C/40% RH, external temperature 35 °C/R407C (data consider inlet and outlet evaporating coil) and Maximum external temperature 45 °C.
Monoblock wall-mounted units for external installation with upflow air discharge

Uniflair WM

WMA – WMF

Standard features

- Monoblock conditioning units are installed on the outside wall of the air conditioned room.
- Air condenser is built in. The units can be supplied completely assembled and filled with refrigerant.
- All the components are set in the factory for normal working conditions. Electrical and cooling functions are all tested. Installation only requires simple electrical wiring and mechanical fixing to the shelter, even by nonspecialized personnel.
- The direct free-cooling units (WMF) are supplied with a motorized damper. During free-cooling the excess of air is expelled from the room through the condenser section without using extra overpressure dampers.
- Complete access to all the components so that servicing can be entirely done from the outside, without having to enter the room which is normally protected by controlled access.
- The external screws are stainless steel, antitamper and can only be removed using special tools.
- The double external paneling is available in galvanized, painted sheet steel and gives separate access to the fan compartment and electric board compartments. This enables maintenance and regulation to be carried out without having to turn the unit off.
- Power Supply:
  - 230V/1/50Hz or 400V/3+N/50Hz (standard, according to the model)
  - Main power supply + UPS 230 V
  - Main power supply + UPS
  - 48 VDC (evaporator DC-fan/s)
- Microprocessor control.
- Scroll compressor (rotary for 0121 model) housed in compartment isolated from the airflow.
- EU4 filter (optional).
- Modulating condenser fan/s speed control.
- Free-cooling metal pre-filter.

TECHNICAL DATA

<table>
<thead>
<tr>
<th>WMW MODELS</th>
<th>0121</th>
<th>0181</th>
<th>0251</th>
<th>0281</th>
<th>0331</th>
<th>0551</th>
<th>0661</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>V/ph/Hz</td>
<td>230/1/50</td>
<td>400/3+N/50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical cooling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensible cooling capacity</td>
<td>kW</td>
<td>3.9/3.9</td>
<td>5.4/5.4</td>
<td>7.4/7.4</td>
<td>8.2/8.2</td>
<td>9.6/9.6</td>
<td>15.2/15.2</td>
</tr>
<tr>
<td>Airflow</td>
<td>m³/h</td>
<td>1240</td>
<td>1460</td>
<td>2240</td>
<td>2240</td>
<td>2670</td>
<td>4580</td>
</tr>
</tbody>
</table>

WMF MODEL

| Free-cooling | | | | | | | | |
| Sensible cooling capacity | kW | 5.0 | 5.8 | 8.5 | 8.5 | 9.2 | 17.4 | 17.4 |
| Airflow | m³/h | 1230 | 1430 | 2100 | 2100 | 2280 | 4310 | 4310 |

COMPONENT FEATURES

| N° of evaporator fans | 1 | 1 | 2 | 2 | 2 | | | |
| N° of condenser fans | 1 | 1 | 1 | 2 | 1 |
| Air filter efficiency | EU2 | EU2 | EU2 | EU2 | EU2 |
| Nominal compressor power | kW | 1.2 | 1.8 | 2.2 | 2.5 | 3.0 | 4.4 | 5.2 |
| Electric heating | kW | 2.6 | 4.0 | 4.0 | 4.0 | 6.0 | 6.0 | 6.0 |
| Noise pressure level | dB(A) | 40.5 | 44.0 | 45.5 | 45.5 | 49.0 | 50.0 | 54.0 |

DIMENSIONS

| Height | mm | 1790 | 1790 | 1940 | 1940 | 1940 | 2250 | 2250 |
| Width | mm | 650 | 650 | 930 | 930 | 930 | 1050 | 1050 |
| Depth | mm | 400 | 400 | 450 | 450 | 450 | 625 | 625 |

1 Room: 26 °C/40% RH; external temperature: 35 °C, R407C.
2 Room: 26 °C; external temperature: 14 °C, R407C.
3 ARI standard.
4 Optional.
5 Measurements taken at 1 metre above the floor and at a distance of 5 metres from the unit in free field, mechanical cooling.
Monoblock units for internal installations

Uniflair MB
XMA – XMF – XDA – XDF

Range
Cooling capacity: XM* 5.7 ÷ 12.3 kW XD* 6.3-15.0 kW
Refrigerant R407C
Available versions:
- Uplow (XMA)
- Uplow with free-cooling (XMF)
- Downflow (XDA)
- Downflow with free-cooling (XDF)

Standard features

- Monoblock conditioning units are installed inside the installation. These units are ideal when the required solution is easy to install with all the refrigerant components already installed.
- The unit has a self-supporting steel structure finished in epoxy powder and external panels in steel finished in epoxy powder; it’s lined internally with abrasion-resistant, self-extinguishing material for noise and heat insulation.
- Units are supplied ready for installation, completely assembled and filled with refrigerant in the factory, where they are calibrated and the electric and cooling systems are tested.
- Easy installation and connection to the outside is provided using rigid or flexible pipes that are fitted to the window.
- The air filtration is provided with an EU2-efficiency air filter in self-extinguishing material and a rigid metal frame; the free-cooling version is available with an additional free-cooling metal pre-filter. EU4 filters are available as an option.
- The evaporating and condensing fans are made of in galvanized steel. Double-inlet centrifugal fan(s) with forward-curved blower are keyed directly to motor shaft.
- The electrical panel is housed in a compartment isolated from the airflow, complying with 73/23/CEE Norm. Separate power supply for fans and microprocessor is available as an option.
- Cooling circuit includes:
  - Filter and flow sight glass
  - Thermostatic expansion valve
  - Highand low-pressure pressostats
  - Scroll compressor with thermal protection
  - Ecological refrigerant R407C
  - Modulating condenser fan speed regulation.
- The microprocessor control manages the unit autonomously and the free-cooling function and can be integrated with the most common BMSs. The control includes:
  - Microprocessor control board and user terminal
  - Room temperature sensor
  - Mixed air temperature sensor (X*F version only)
  - External temperature sensor (X*F version only)
- Power Supply:
  - 230 V/ 1/ 50 Hz or 400 V/3+N/50 Hz (Standard, according to the model)
  - Main power supply + UPS 230 V
  - Main power supply + UPS 48 VDC (evaporator DC fan/s, available only for XMF)
- Microprocessor control.
- Scroll compressor with low noise level.
- EU4 filter (optional).
- Modulating condenser fan/s speed control.
- Free-cooling metal pre-filter.
# TECHNICAL DATA

## XDA – XDF MODELS

<table>
<thead>
<tr>
<th>Model</th>
<th>0221</th>
<th>0281</th>
<th>0341</th>
<th>0481</th>
<th>0501</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply V/ph/Hz</td>
<td>230/1/50</td>
<td>230/1/50</td>
<td>230/1/50</td>
<td>400/3+N/50</td>
<td>400/3+N/50</td>
</tr>
<tr>
<td>Mechanical cooling¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total/sensible cooling capacity kW</td>
<td>1.058</td>
<td>6.3/5.8</td>
<td>7.0/6.4</td>
<td>9.0/8.0</td>
<td>12.0/12.0</td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>2230</td>
<td>2230</td>
<td>2900</td>
<td>3920</td>
<td>3920</td>
</tr>
<tr>
<td>Free-cooling²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensible cooling capacity kW</td>
<td>9</td>
<td>9</td>
<td>11.7</td>
<td>15.8</td>
<td>15.8</td>
</tr>
</tbody>
</table>

## COMPONENT FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>0221</th>
<th>0281</th>
<th>0341</th>
<th>0481</th>
<th>0501</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° of evaporator fans</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>N° of condenser fans</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Air filter efficiency EU2</td>
<td>EU2</td>
<td>EU2</td>
<td>EU2</td>
<td>EU2</td>
<td>EU2</td>
</tr>
<tr>
<td>Electric heating³</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

## DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>0221</th>
<th>0281</th>
<th>0341</th>
<th>0481</th>
<th>0491</th>
<th>0501</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height mm</td>
<td>1970</td>
<td>1970</td>
<td>2130</td>
<td>2130</td>
<td>2130</td>
<td>2130</td>
</tr>
<tr>
<td>Width mm</td>
<td>850</td>
<td>850</td>
<td>1160</td>
<td>1160</td>
<td>1160</td>
<td>1160</td>
</tr>
<tr>
<td>Depth mm</td>
<td>450</td>
<td>450</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
</tr>
</tbody>
</table>

## XMF MODELS

<table>
<thead>
<tr>
<th>Model</th>
<th>0221</th>
<th>0281</th>
<th>0341</th>
<th>0401</th>
<th>0491</th>
<th>0555</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply V/ph/Hz</td>
<td>230/1/50</td>
<td>230/1/50</td>
<td>230/1/50</td>
<td>400/3+N/50</td>
<td>400/3+N/50</td>
<td>400/3+N/50</td>
</tr>
<tr>
<td>Mechanical cooling¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total/sensible cooling capacity kW</td>
<td>5.7/5.7</td>
<td>7.1/7.1</td>
<td>8.4/8.4</td>
<td>10.8/10.8</td>
<td>12.3/12.3</td>
<td>16.5/16.5</td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>1500</td>
<td>2000</td>
<td>2200</td>
<td>3700</td>
<td>3700</td>
<td>3710</td>
</tr>
<tr>
<td>Free-cooling²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensible cooling capacity kW</td>
<td>6.1</td>
<td>8.1</td>
<td>8.9</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

## COMPONENT FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>0221</th>
<th>0281</th>
<th>0341</th>
<th>0401</th>
<th>0491</th>
<th>0555</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° of evaporator fans</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>N° of condenser fans</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Air filter efficiency EU2</td>
<td>EU2</td>
<td>EU2</td>
<td>EU2</td>
<td>EU2</td>
<td>EU2</td>
<td>EU2</td>
</tr>
<tr>
<td>Electric heating³</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

## DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>0221</th>
<th>0281</th>
<th>0341</th>
<th>0401</th>
<th>0491</th>
<th>0555</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width mm</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Depth mm</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
</tbody>
</table>

¹ Room: 26 °C/40% RH; external temperature: 35 °C, R407C.
² Room: 26 °C; external temperature: 14 °C, R407C.
³ Optional.
Spilt units for internal installations

Uniflair SP
UCA – UCF – UWA – UWF

Standard features

- Units are made of two separate sections: the evaporation section, which is installed inside the conditioned room (UCA – UCF – UWA – UWF), and the condensation section (MRA), which is installed on the outside.
- The evaporator is designed to be fixed to the ceiling or a wall and, with advanced microprocessor control, it is very precise in maintaining the set parameters inside the conditioned room.
- Servicing is very simple as different access is given to the electrical board, the technical compartment, and the servomotor for the free-cooling damper.
- There is a special panel for the fan compartment, which means calibration and servicing can be carried out safely without having to turn the unit off.
- UCF units have free-cooling that intakes air from the back of the unit through a connection that can be made using either rigged ducting or flexible piping.
- The user terminal (on request) is fitted to the wall for ceiling units and onboard for the wall fitted units, and gives complete control for the unit regarding changing and displaying the operating parameters.
- Internal and external units are powered separately.
- Power Supply:
  - 230 V/1/0 Hz or 400 V/3+N/50 Hz
    (Standard, according to the model)
  - Main power supply + UPS
    - 48 VDC (evaporator DC-fan/s)
- Evaporator sections are equipped with:
  - Microprocessor control
  - EU4 filter (optional)
  - Scroll compressor
  - Modulating condenser fan/s speed control

Range

Cooling capacity: 5.9 ÷ 14.5 kW

Refrigerant R407C

Available versions:
- Ceiling mounted (UCA)
- Ceiling mounted with direct free-cooling (UCF)
- Wall mounted (UWA)
- Wall mounted with direct free-cooling (UWF)

TECHNICAL DATA

<table>
<thead>
<tr>
<th>MODELS</th>
<th>CEILING UCA – UCF</th>
<th>WALL UWA – UWF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply V/ph/Hz</td>
<td>230/1/50</td>
<td>230/1/50</td>
</tr>
<tr>
<td>Mechanical cooling¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensible cooling cap. kW</td>
<td>5.9/5.9</td>
<td>7.1/7.1</td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>1850</td>
<td>1850</td>
</tr>
<tr>
<td>UCF-UWF</td>
<td>0341</td>
<td>0401</td>
</tr>
<tr>
<td>Free-cooling²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensible cooling cap. kW</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Airflow m³/h</td>
<td>1850</td>
<td>1850</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height mm</td>
<td>330</td>
<td>330</td>
</tr>
<tr>
<td>Width mm</td>
<td>950</td>
<td>950</td>
</tr>
<tr>
<td>Depth mm</td>
<td>1050</td>
<td>1050</td>
</tr>
</tbody>
</table>

EXTERNAL UNIT MRA

| Power supply V/ph/Hz | 400/3+N/50 | 400/3+N/50 | | | | | | | | |
| Nominal compressor power³ kW | 1.7 | 2.1 | 2.6 | 3.1 | 4.6 | 1.7 | 2.1 | 2.6 | 3.1 | 4.6 |
| Airflow m³/h | 1800 | 2990 | 2990 | 6290 | 6290 | 1800 | 2990 | 2990 | 6290 | 6290 |

DIMENSIONS

| Height mm | 610 | 610 | 610 | 1230 | 1230 | 610 | 610 | 610 | 1230 | 1230 |
| Width mm | 850 | 850 | 850 | 1200 | 1200 | 850 | 850 | 850 | 1200 | 1200 |
| Depth mm | 345 | 345 | 345 | 80 | 80 | 345 | 345 | 345 | 80 | 80 |

¹ Room: 26 °C/45% RH; external temperature: 35 °C, R407C.
² Room: 26 °C; external temperature: 14 °C; R407C.
³ ARI standard.
Active Floor

Standard features

- Active Floor is a flexible and modular system for cooling data centres with medium- and high-density loads. Integrated within a modular access floor in front of the intake section of the rack, the Active Floor fits exactly into a modular access floor panel measuring 600 mm x 600 mm. The cold air produced by the Close Control perimeter units is directly channeled to the source of the thermal load thanks to the advanced adjustment of the direction of the airflow. The Active Floor creates a high-density bubble of air, which is maintained at a constant temperature along the whole intake section of the rack, guaranteeing operation at the nominal design conditions. The airflow varies according to the actual thermal load and is detected by two sensors placed on the discharge section of the servers.
- Active Floor employs variable speed EC, motor-driven fans to minimize energy consumption.
- This solution may be used in stand-alone applications as well as with perimeter Close Control units equipped with underfloor pressure control.
- The Active Floor guarantees optimum operation of high-density equipment for loads installed in each module of 25 kW and 40 kW with solutions featuring the two modules certified by TUV.

TECHNICAL DATA

<table>
<thead>
<tr>
<th>ACTIVE FLOOR</th>
<th>V/ph/Hz</th>
<th>220/1+N/60</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° of fans/motor</td>
<td></td>
<td>1/E.C</td>
</tr>
<tr>
<td>Max airflow</td>
<td>m³/h/CFM</td>
<td>4988/2936</td>
</tr>
<tr>
<td>Nominal airflow</td>
<td>m³/h/CFM</td>
<td>2880/1650</td>
</tr>
<tr>
<td>Min airflow</td>
<td>m³/h/CFM</td>
<td>1698/999</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>mm/inch</td>
<td>230/9.1</td>
</tr>
<tr>
<td>Width</td>
<td>mm/inch</td>
<td>600/23.6</td>
</tr>
<tr>
<td>Depth</td>
<td>mm/inch</td>
<td>600/23.6</td>
</tr>
</tbody>
</table>
Uniflair CAP

Standard features
- R-410A refrigerant.
- Low noise axial fans with IP54 class F electric motor.
- Fan speed pressure switch regulator with protection grade IP55.
- Safety protection grills.
- Copper and aluminum condensing coil.
- Low noise levels.
- Outdoor installation.
- High-efficiency, EU4-pleated air filter housed in a metal frame and filter differential pressure switch.
- Vertical or horizontal installation.
- Welded refrigeration connections for rapid and safe connection.
- Condensers are powered by the internal unit to grant operation at 208 – 230 V with a tolerance of +/-10%.

Accessories
- Shut off valves
- Leg support kit
- Manifold kit to make the unit single circuit
- Coil protection treatment for use in aggressive environments
- Low temperature versions down to -40 °C with high-resilience steel liquid receiver and flooding valve to control the condensing temperature

Range
Cooling capacity: 7 ÷ 160 kW
Refrigerant R-410A

TECHNICAL DATA

<table>
<thead>
<tr>
<th>CAP MODEL</th>
<th>251</th>
<th>331</th>
<th>361</th>
<th>511</th>
<th>611</th>
<th>801</th>
<th>1011</th>
<th>1301</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan type</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
</tr>
<tr>
<td>Performance capacity¹</td>
<td>kW</td>
<td>8.2</td>
<td>9.8</td>
<td>12.8</td>
<td>16.6</td>
<td>20.2</td>
<td>27.6</td>
<td>33.7</td>
</tr>
<tr>
<td>Airflow rate at 0.08 m² (20 Pa)</td>
<td>m³/h</td>
<td>3050</td>
<td>2750</td>
<td>3300</td>
<td>6100</td>
<td>9150</td>
<td>9150</td>
<td>8250</td>
</tr>
<tr>
<td>Number of circuits</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Noise level²</td>
<td>dB(A)</td>
<td>51</td>
<td>50.5</td>
<td>51.5</td>
<td>53.2</td>
<td>52.6</td>
<td>54.6</td>
<td>54.1</td>
</tr>
</tbody>
</table>

DIMENSIONS

<table>
<thead>
<tr>
<th>CAP MODEL</th>
<th>1802</th>
<th>2002</th>
<th>3002</th>
<th>4002</th>
<th>5002</th>
<th>6002</th>
<th>7002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>mm</td>
<td>732</td>
<td>732</td>
<td>1067</td>
<td>1227</td>
<td>1227</td>
<td>1877</td>
</tr>
<tr>
<td>Width</td>
<td>mm</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>Depth</td>
<td>mm</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
<td>700</td>
</tr>
</tbody>
</table>

¹ With external temperature 35 °C and 50 °C R-410A condensing temperature
² Measured in free field conditions at 5 metres from the unit.

<table>
<thead>
<tr>
<th>CAP MODEL</th>
<th>1802</th>
<th>2002</th>
<th>3002</th>
<th>4002</th>
<th>5002</th>
<th>6002</th>
<th>7002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan type</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
<td>Axial</td>
</tr>
<tr>
<td>Performance capacity¹</td>
<td>kW</td>
<td>61.3</td>
<td>67</td>
<td>88.7</td>
<td>96.4</td>
<td>127.9</td>
<td>145.8</td>
</tr>
<tr>
<td>Airflow rate at 0.08 m² (20 Pa)</td>
<td>m³/h</td>
<td>17500</td>
<td>16900</td>
<td>27500</td>
<td>26250</td>
<td>35000</td>
<td>45000</td>
</tr>
<tr>
<td>Number of circuits</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Noise level²</td>
<td>dB(A)</td>
<td>61</td>
<td>61</td>
<td>63</td>
<td>63</td>
<td>64</td>
<td>65</td>
</tr>
</tbody>
</table>

DIMENSIONS

| Height    | mm   | 2217 | 2217 | 3217 | 3217 | 4217 | 5217 | 5217 |
| Width     | mm   | 400  | 400  | 400  | 400  | 400  | 400  | 400  |
| Depth     | mm   | 700  | 700  | 700  | 700  | 700  | 700  | 700  |
Data Centre Infrastructure Management

Good design and quality construction alone do not ensure a highly available and efficient data centre. Data centres require ongoing monitoring and management to ensure the facility lives up to its design intent. StruxureWare for Data Centres is a software management suite designed to collect and manage data about a data centre’s assets, resource use, and operational status throughout the life cycle of the facility. This information is then distributed, integrated, and applied in ways that help managers optimize the data centre’s performance and meet IT, business, and service-oriented goals. From IT assets to racks, rows, rooms, and buildings, StruxureWare for Data Centres delivers the right information to the right users at the right time.

Control level
Experts, on-site or remotely, can control process performance and ensure business continuity in real time, while tracking energy consumption in a highly critical and secure environment.

Operations level
Functional managers can optimize operations, energy, and assets through smart analytical tools, often spanning multiple sites.

Enterprise level
C-level executives can drive their sustainability strategy efficiently, choosing the best scenario that meets their business objective to conserve enterprise-wide resources.

StruxureWare for Data Centres allows for flexibility when requirements and implementation strategies change over time. StruxureWare software applications and suites simplify integration time, improve reliability, enhance visibility to energy information, and streamline operational efficiency.

Visit www.apc.com/software to learn more about StruxureWare for Data Centres!
To learn more about Uniflair cooling solutions, visit www.uniflair.co.uk